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Abstract
Reasoning about programs is hard. Reasoning about concurrent programs is harder.

Behaviour-Oriented Concurrency (BoC) is a novel programming paradigm that tackles the chal-
lenges of concurrent programming by emphasizing the creation and coordination of ordered atomic
units of work. BoC provides guarantees like deadlock and data-race freedom, restricted determ-
inism, and flexible coordination to ensure correct and efficient execution of concurrent programs
while mitigating common concurrency issues.

Reasoning about BoC programs is crucial to ensure their correctness and reliability in the face of
non-determinism and complex control flows. It enables the detection and prevention of concurrency-
related bugs, enhancing software quality and robustness.

Compiling BoC programs to an intermediate language offers a valid approach for reasoning about
program correctness. The intermediate language serves as a formal and abstract representation,
facilitating the application of static analysis and formal verification techniques. By operating on
this intermediate language, analysis tools can systematically reason about BoC program behaviour,
detecting potential issues and preserving desired properties.

In this thesis, we introduce GIL+ as a target language for BoC programs. GIL-+ incorporates the
necessary constructs and semantics to capture the essence of BoC, facilitating the analysis and
verification of BoC programs using formal methods. We provide a translation from BoC to GIL+
and establish its soundness.
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Chapter 1

Introduction

Programming languages such as Golang, Node.js and Elixir mark a shift towards the use of asyn-
chronous concurrency in programming languages [1]. This recent affinity to asynchronous patterns
can be attributed to the rise of multicore processors and the need to make efficient use of system
resources. Asynchronous programming allows for better performance and scalability in systems by
having multiple tasks be executed simultaneously without blocking the execution of other tasks.
These advantages of asynchronous programs make them a fundamental building block for the cloud
computing services offered by the likes of Amazon and Microsoft.

However, writing asynchronous programs comes with its challenges. The management of multiple
concurrent tasks and the potential for race conditions make code structuring and reasoning about
program correctness more complex. Unlike in synchronous programs, where the flow of control
follows a predetermined order, asynchronous programs introduce non-determinism due to parallel
execution and external factors, making the flow of control harder to predict.

To address the challenges of asynchronous programming, Project Verona' introduced Behaviour-
Oriented Concurrency (BoC). BoC focuses on the asynchronous creation of ordered atomic units
of work while providing guarantees such as deadlock freedom, data-race freedom, restricted de-
terminism (a predetermined partial order of execution) and flezible coordination (access to shared
resources such as memory). These guarantees aim to ensure the correct and efficient execution of
concurrent programs, mitigating common concurrency issues.

Just like any other concurrency paradigm, proving total correctness of a BoC program is a non-
trivial task. Traditional testing approaches fall short for code that utilizes asynchronous concur-
rency because such patterns add ambiguity to the control flow, introduce non-determinism and give
rise to heisenbugs?. The following quote by Edsger W. Dijkstra perfectly sums up the limitations
of traditional software testing for sequential and concurrent programs alike:

Testing can be a very effective way to show the presence of bugs, but it is hopelessly
inadequate for showing their absence

The question still remains, “How does one reason about correctness in a concurrent program?”.
Machine-aided software verification offers a promising solution to address the correctness chal-
lenges in concurrent programming. This approach, initially proposed by Alan Turing in 1949 3],
leverages formal methods and automated analysis techniques to prove the correctness of programs.
Notable work by Hoare [4] and O’Hearn et al. [5, 6] laid the foundations for machine-aided veri-
fication, leading to the development of Gillian— a multi-language platform for the development of
compositional symbolic analysis tools [7, 8, 9, 10].

Gillian enables the analysis and verification of programs written in a source language by translating
them into a target language (TL) and performing analysis on the TL. The target language used in
Gillian is called the Gillian Intermediate Language (GIL).

La collaboration between Microsoft Research and Imperial College London (ICL)[2]
2a software bug that seems to disappear or alter its behaviour when one attempts to study it.



GIL serves as an intermediate representation that allows Gillian to support the analysis and veri-
fication of sequential programs written in languages such as C, JavaScript, and WISL (a simple
while language). By translating programs into GIL, Gillian is able to provide a formal and unified
framework for reasoning about program properties and conducting various analyses.

The use of a target language or intermediate language is a common approach in software verification
tools. Tools like Facebook Infer[11]|, Verifast [12, 13] and Viper [14] also employ this approach,
each with their own respective target languages. These target languages provide a formal and
abstract representation of programs, enabling the application of static analysis techniques and
formal verification methods. By utilizing a target language, these verification tools can leverage
formal reasoning and analysis techniques to detect errors, prove program correctness, and perform
various forms of program analysis.

Building on the success of Gillian in reasoning about program correctness using target languages,
this Master’s Thesis proposes a novel target language called GIL+ for the translation of BoC
programs.

1.1 Contributions

In achieving our key objective of creating a new TL, we make the following contributions:

e A formal model for MiniBoC: In Section 4.2, we introduce small-step operational
semantics for a simple language that is extended with Behaviour oriented Concurrency,
MiniBoC.

e A formal model for GIL+: In Section 5.4, we introduce small-step operational semantics
for our newly proposed Target Language, GIL+.

e A sound translation from MiniBoC to GIL-+: In Section 5.5, we provide the translation
from MiniBoC to GIL+. We also prove that is translation is sound in Chapter 6.

e FlexibleBoC: In Section 5.6.3, we propose an alternate BoC paradigm named FlexibleBoC
that is well suited for resource contention and utilization.

1.2 Challenges

Throughout this project, we encountered several significant challenges that required careful con-
sideration and problem-solving. Three primary challenges stood out:

e Understanding BoC: The Behaviour-Oriented Concurrency (BoC) paradigm presented a
notable challenge due to its inherent complexities and the evolving nature of its formal model
during the course of this thesis. BoC is not yet widely adopted, which made it necessary to
delve deep into the existing literature and engage with the research community to grasp its
intricacies. This involved understanding the theoretical foundations, design principles, and
practical implications of BoC to ensure an accurate and comprehensive representation in the
target language.

e Adapting to Evolving Formal Model of BoC: As BoC is still an emerging paradigm, its
formal model underwent revisions and changes based on ongoing research during the course
of this project.

e Designing Sensible Small Step Operational Semantics: One of the key contributions
of this project was the creation of a new target language, GIL+, for translating MiniBoC
programs. Designing the small-step operational semantics for GIL+ posed a significant chal-
lenge, as it required constructing a clear and intuitive set of rules that effectively captured
the essential aspects of the BoC paradigm. This involved careful consideration of the or-
dering of operations, coordination mechanisms, and ensuring the semantics aligned with the
intended behaviour of MiniBoC programs. Striking the right balance between simplicity, ex-
pressiveness, and capturing the essence of BoC was a non-trivial task that required iterative
refinement and validation.



Chapter 2

Background

In this chapter, we delve into the foundational logics that serve as essential resources for creating
a new Target Language. We begin by exploring Hoare Logic, a widely-used logic for program
verification that allows for reasoning about pre- and post-conditions of program statements. Hoare
Logic provides a framework for specifying and verifying program correctness, making it a valuable
reference for analysing and understanding translated programs in the Target Language.

Next, we examine Separation Logic, a logic extension of Hoare Logic that enables reasoning about
programs with dynamically allocated memory. Separation Logic introduces the notion of spatial
separation to reason about the state of memory and the interactions between different program
components. We then move on to Concurrent Separation Logic, which extends Separation Logic
to handle concurrent programs. Concurrent Separation Logic provides mechanisms for reasoning
about shared resources, synchronization, and thread interactions, making it a fundamental logic
for reasoning about concurrent programs.

Furthermore, we provide an overview of Gillian and its associated intermediate language, GIL.
Understanding the capabilities and features of Gillian and GIL gives additional context to the
reader about the existing Gillian toolchain. Additionally, we provide an introduction to WISL, a
simple while language.

2.1 Hoare Logic

In 1969, Sir Tony Hoare developed a formal system for reasoning about the correctness of computer
programs aptly named Hoare Logic' (HL) [4]. HL is based on the use of first-order logic assertions
that can be used to describe the state of a program. Using these assertions, one could define
pre-conditions P and post-conditions, () which represent the state of a program before and after
some command C is executed. This program specification is denoted by a Hoare Triple:

= {P}c{Q}

The semantic interpretation of which is:

Given a logical state satisfying pre-condition P, the program does not fault. If the
program terminates, it results in a logical state satisfying post-condition Q. [16]

Using a set of rules for manipulating Hoare triples, HL can be used to prove program correctness
as a safety property (“bad things don’t happen” [17]). One such rule is the sequential composition
rule, which highlights the composable nature of Hoare Triples. The rule is given as follows:

F{P}C{Q"} +{Q"} 2 {Q} -
= {P} C1;Cy {Q}

Since HL is sound and complete, if HL is unable to prove program correctness, then the program
is guaranteed to be incorrect.

Lsometime’s referred to as Floyd-Hoare logic due to significant contributions made by Robert W. Floyd’s in [15]



2.2 Separation Logic

Although HL provides a robust framework for verifying program correctness, it can be challenging
to use as the complexity of programs increases, especially when dealing with programs with memory
allocated on the heap. As a solution to these shortcomings, Peter O’Hearn, John Reynolds and
Hongseok Yang and came up with Separation Logic (SL) as an extension of Hoare Logic [5]. Hoare
et al. identified that describing the complete state of the program becomes difficult when working
with complex data structures. Usually, operations on a data structure involve mutating isolated
parts of the structure while ignoring the rest. This ability to reason about the program heap locally
rather than globally? is a key feature of SL.

Heap cells (Section 2.2.1) assertions, the spatial connective ‘x’ (Section 2.2.2) along with the frame
rule (Section 2.2.3) allow for local reasoning allowing SL to scale while avoiding the unwieldy nature
of HL.

2.2.1 Heap Cell Assertions

HL is based on first-order logic, which means that the reasoning does not scale well for heap-
manipulating programs. SL introduced the following heap cell assertion to allow for reasoning
about the heap:

Ty

This denotes a single cell in the heap at address® z with value 3. SL also introduced an empty
heap cell assertion representing an empty heap denoted by the following:

emp

2.2.2 The Separating Conjunction

SL also introduce a spatial connective, the separating conjunction (), which is a logical operator
used to reason about the memory layout of a program. The assertion P » @, read “ P and separately
(), represents a piece of program heap that can be divided into two disjoint heaplets (or heap
fragments), with one heaplet satisfying P and the other Q. For e.g., Figure 2.1 shows two distinct
heaps that reference each other and can be represented by the assertion z — y x y — .

COK

Figure 2.1: A visualization of the separating conjunction [18]

This separating conjunction can be used to define various different data structures, for e.g. one
could define a list predicate like so:

list(x) ef (x = null) v (Ju.z —» v * list(v))

This recursive-like structure when defining predicates in SL is quite common. The dot above the
equals sign in the represents an empty heap and can be used with any another operator.

Some properties of the separating conjunction are as follows:

FP*xQ <— Qx*P (commutativity)
FP+x(Q+R) — (P+xQ)*R (associativity)
P xemp < P (identity)
FPAP,«Q — (PL>Q)A(P2~*Q) (distributivity over logical and)
FPVP+xQ «— (PL>Q)Vv (P ~*Q) (distributivity over logical or)

2the behaviour of a program is specified by the entirety of its state
3addresses in Sl are represented by natural numbers



Some additional notation in SL is defined for convenience:
def
T - = dy.xey

def
T = Yo, Y1, - Yn ngyo*x+1r—>y1*...*x+n»—>yn

2.2.3 Frame Rule

The frame rule is a crucial principle of SL that enables the temporary elimination of unnecessary
logic while reasoning about a particular command, and is given as follows:

- {P}C{Q} mod(C) ntv(R) = ¢
F{P ~ R} C{Q ~ R}

FRAME

where mod (C) is the set of modified variables for some command C and £fv(R) represents the set
of variables that free(i.e. not bound by a logical quantifier) in R.

The mod(C) n fv(R) = ¢ expression ensures that only logic reasoning about the heap mutated
by the command is framed off.

2.3 Concurrent Separation Logic

2.3.1 Fundamental tenets

Reasoning about concurrent programs requires some basic terminology. This subsection goes
through the basic principles that are a prerequisite to reasoning about concurrent programs using
CSL.

e PARALLEL PROCESS: To support reason about concurrent programs, the following notation
was introduced:
Ci | Co

which denotes the execution of two commands C; and C, programs in parallel by two distinct
processes.

e RACY PROGRAMS: For any programming model that allows concurrent processes (like threads),
shared access to common state is possible. When this occurs in a program, the program is
said to be racy. A more exact definition of racy is as follows:

A program is racy if two concurrent processes attempt to access the same portion
of state at the same time. Otherwise, the program is race-free [19]

Equation 2.1 shows an example of a racy program.

r=z+1l||lx=z-1 (2.1)

e MUTUAL EXCLUSION GROUP: A mutual exclusion group is a group of commands that are
required to not overlap in their execution. A semaphore can be used to form mutual exclusion
groups. A semaphore (s) is represented by a non-negative integer which has wait, P(s), and
signal, V (s), operations. The wait operation decrements the value of the semaphore when it
is greater than 0 and the signal increments the value.

e DARING PROGRAMS: A program is cautious if, whenever concurrent processes access the
same piece of state, they do so only within commands from the same mutual exclusion
group. Otherwise, the program is daring. For e.g., the following program is daring as it
accesses the same piece of state (heap address 10) in different mutual exclusion groups.

semaphore free = 1,busy = 0

P(free) P(busy)
[10] =x [ y = [10]
V(busy) V(free)

10



2.3.2 What is CSL?

Concurrent Separation Logic (CSL) was introduced by Peter O’Hearn as an extension of Separation
Logic to reason about concurrent and parallel programs [19]. CSL states that if {P} C {Q} holds,
then any execution of C starting from a state satisfying P will not result in a race condition or
attempt to access a dangling pointer [20]. CSL makes use of two key concepts - ownership and
separation

Ownership Hypothesis The ownership hypothesis states that each process has exclusive owner-
ship of the memory it creates or modifies, and that the memory can be accessed by other processes
only if it is explicitly shared. In languages like Rust [21] this concept of ownership is a part of the
programming model, but that is not necessary for using CSL. The hypothesis is formally stated as
follows:

A code fragment can only access those portions of the state that it owns

Separation Hypothesis The separation hypothesis states that the memory of a program can be
divided into disjoint regions, where each region corresponds to a heaplet which can be reasoned
about independently of others. The hypothesis is formally stated as follows

At any time, the state can be partitioned into that owned by each process and each
grouping of mutual exclusion

It is important to note that the state partition caused by the separation property is not static and
can change over time.

2.3.3 An intuitive understanding

This section aims to provide an intuitive understanding of CSL with the help of Listing 2.1.

{emp} {emp}
P(free) P(busy)
{10 - -} {10 - -
[10] = I y = [10]
{10 » -} {10 » -}
V(busy) V(free)

{emp} {emp}

Listing 2.1: A Binary semaphore example

In the given code snippet, the heap address cell 10 is attached (intuitively) to semaphores. The
assertions (in blue) in this code snippet represent the local state from the point of view of that
process. The P(s) operations for a semaphore s transfers the ownership of heap address 10 to
the process, and the V(s) takes back the ownership from the process. The ownership of the heap
address is passed around between the semaphores and the processes. At any given time, this heap
address is owned by either owned by exactly one of the processes or exactly one of the semaphores.
The logical attaching of a resource to the semaphores and their ability to transfer ownership allows
for concurrent reasoning of resources modularly.

The assertion annotations implicitly contain information about ownership (or permissions). An
assertion P in a process implies that the process owns P, i.e. it has the right to dereference it at
that point.

2.3.4 Disjoint Concurrency
The proof rule added by O’Hearn for disjoint concurrency is as follows:

AP} C{Q1} {2} C1{Q2}

Disi-PAr
F AP * P} Cp || C2 {Q1 * Q2}

where C; does not modify any free variables in P;, Q1 or C; and conversely Co does not modify any
free variables in P5, ()5 or Cs.

11



This rule can not be used to reason about racy programs, as there will always be information that
won’t be broken down into 2 disjoint heaps. Some intuition for this can be seen when reasoning
about Equation 2.2 with pre-condition {10 ~» -}. To use the disjoint concurrency rule, 10 — —
needs to be represented as P; = P, which is never possible.

[10] = 0 || [10] = 1 (2.2)

2.3.5 Process Interaction

Listing 2.2 shows how a program is defined in CSL. A program consists of multiple resources (r;
is a variable list) and multiple processes (C; is a command that will be run concurrently)

init
resource ri,...,Tm
il G

Listing 2.2: A program in CSL

CSL uses conditional critical regions (CCRs) to allow reasoning about process interaction and the
command for accessing them is as follows:

with r when B do C endwith

r is a resource, B is a boolean expression and C is a command. The with command represents a
unit of mutual exclusion, and two with commands for the same resource can not run in parallel.
C is executed if no other region for r is executing and if B is true. Variables and resources in CSL
abide by the following rules:

(1) A variable belongs to at most one resource

(2) If a variable belongs to a resource r, then it cannot appear in a process except for in the
critical region for r

3) If a variable is mutated in one process, it cannot appear in another process unless it belongs
to a resource.

These rules prevent variables from receiving interference from different processes. (1) and (2)
imply that variables owned by resources can only be accessed from the critical region of a resource.
Since regions are mutually exclusive, there is no interference here. Variables that are not owned
by resources and are local to the thread can not be interfered with by another process due to

(3)-

A resource invariant formula is introduced for each resource (RI, is the resource invariant for r).

This resource invariant satisfies that any command changing a variable x (z := ...) must be in a

critical region for a resource. All resource invariants also have to be precise®.

The inference rule in CSL is:
{P} init {RI,, * ..~ RI. ~* P} {P'yCy || .. || Cn {Q}
{P} init;resource 71,....;7m;C1 || .. || Cn {RIL,, * ... » RI. * Q}

The interference rule for parallel composition is:

{Pl} Cl {Ql} {Pn} Cn {Qn}
{Pl * oLk P,,} C1 || || Cn {Ql * oLk Qn,}

where no free variables in P; or @); are changed in C; when j # ¢. This rule is analogous to the
disjoint concurrency rule introduced in Section 2.3.4.

The critical region rule in CSL is:

{(P ~ RI,) n B} C{Q » RI,}
{P} with r when B do C endwith {Q}

with the side condition that no other process modifies free variables in P or ().

4an assertion P is precise if for all states (s, h) there is at most one heaplet h’ ¢ h where s, h = P
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2.4 An overview of Gillian

Building upon the seminal work done by Hoare [4] and by
O’Hearn et al. [5, 6] in the field of software verification,
the Verified Software Research Group at ICL developed
a symbolic analysis tool — Gillian [7, 8, 9, 10]. Gillian

is a multi-language platform for symbolic analysis which T Oelmaim
supports three types of program analysis:

Specification

e whole program symbolic testing where users define
a test suite of unit tests with symbolic inputs and
outputs along with some constraints on them and
Gillian attempts to find symbolic states that cause
any of the test suites to fail

o full verification where users annotate function pre- Goncrata D, Basicactions < Symboli
o . . . P TL Memory Core predicates TL Memory
and post-conditions and loop invariants. Gillian Model Fixes Model

symbolically executes the program to ensure that

the post-conditions for all the functions hold. Figure 2.2: Overview of Gillian [22]

e automatic compositional testing where only provide
the source code for a program. Gillian, using bi-
abduction logic [23], deduces the SL assertion an-
notations and attempts to verify them. This is similar to Facebook’s Infer tool [11, 24].

The key advantage that Gillian has over other tools is that it has a parametric memory model. The
memory model is parametric with respect to a target language (TL). This allows Gillian to support
a variety of languages with different memory models with the same backend. Given a compiler
from TL to GIL (Gillian’s intermediate representation) and the TL’s memory model (defined in
OCaml), Gillian can perform program analysis on programs written in the TL [8].

2.5 An overview of GIL

GIL is a simple goto language used as the intermediate representation in Gillian. GIL is parametric
on a set of memory actions, A, that is dependent on the TL. This set of memory actions describes
the fundamental ways in which TL programs interact with memory.

2.5.1 Values

GIL values (v € V) are numbers, strings, booleans, uninterpreted symbols, types, procedure iden-
tifiers and lists of values. In GIL, uninterpreted symbols are primarily used to denote memory
locations.

vy df
nelR (Numbers)
|seS (Strings)
|beB (Booleans)
|uweld (Uninterpreted Symbols)
|t eT (Types)
|peP (Procedure Identifiers)
| 7 € List(V) (Lists)

2.5.2 Expressions

There are two types of expressions in GIL - simple expressions (e € &) and symbolic expres-
sions (é € £). GIL Expressions consist of values, program variables, unary operators and binary
operators. GIL symbolic expressions are analogous.

13



ceg e
vey (Numbers) beV (Numbers)
| z € X (Program Variables) |i € X (Program Variables)
| ee (Unary Operator) | o¢ (Unary Operator)
|e1 @ ez (Binary Operator) | €1 ® €2 (Binary Operator)

2.5.3 Commands

GIL commands (¢ € C4) consist of a variable assignment, conditional goto, function call, memory
actions, allocation of uninterpreted /interpreted symbols, function return and error termination.

ceC A d26f
T =€ (Variable assignment)
| goto i (Unconditional goto)
| ifgoto e @ j (Conditional goto)
| z = e(e’) (Procedure call)
| z = a(e) (Action execution)
| x = uSym/iSym(e) (Uninterpreted /interpreted Symbol allocation)
| return e (Normal return)
| fail e (Error return)

2.5.4 Procedures

A GIL procedure (f(Z){c}) consists of an identifier f € F, a list of parameters T, and a body
described by a list of commands ¢. A set of GIL procedures with unique identifiers form a GIL

program (p).

proc € Procyg < f@){c}

p € Proga : P = Proca

2.6 An overview of WISL

WISL is a simple while-based programming language used for research and educational purposes.
It has a memory model composed of blocks, each of which is identified by a unique location. These
blocks are described by:

e a list of contiguous memory cells that map numerical offsets to values stored in the heap

e a natural number bound that determines the size of the block

2.6.1 Informal Memory Model

WISL has the capability to track negative resources, which occur during allocation or deallocation.
Negative information arises during allocation when a block with a specific size can not have offsets
beyond that size (which is captured by the bound). During deallocation, the negative information
that only complete blocks can be deleted is captured by the fact that a memory block can either
map to a list of cells or a dedicated freed symbol.

The SL assertions language is extended with the following core predicates for WISL:
e bound(E}, Es) states that E; is a block pointer which points to a block of length Es

e I/ — ¢ represents that E is a block pointer which, along with its entire block, has been freed
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e £} FEp, E5 which is just syntactic sugar for £ » E; « E + 1 —» E5 » bound(F, 2)

2.6.2 Syntax
The WISL syntax is described as follows:
e Assignment: x = E assigns the expression E to variable x in the variable store.

e Lookup: x := [E] assigns the value present at heap address E to variable x in the variable
store

e Mutation: [E1] := E2 stores the value E2 at heap address E1

e Allocation: x = new(n) allocates a new memory block consisting of n cells

e Deallocation: free(E) frees the memory block starting at address E

e Conditional: if (B) {C;} else {Cy} executes C; if B is true otherwise executes Co

e No-op: skip does nothing
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Chapter 3

A New Concurrency Paradigm:
Behaviour Oriented Concurrency

BoC is a concurrency paradigm that has stemmed from a collaboration between Microsoft Research
and Imperial College London.

This chapter elucidates the fundamentals of concurrency and concurrency paradigms, subsequently
delving into Behaviour Oriented Concurrency (BoC).

3.1 What is a Concurrency Paradigm?

Concurrency refers to the ability of a program to execute multiple tasks simultaneously, poten-
tially overlapping or running in parallel. It represents a fundamental aspect of contemporary
software development, facilitating the efficient utilization of resources and enhancing overall per-
formance.

A concurrency paradigm denotes a specific approach or model employed in the design and im-
plementation of concurrent programs. It encompasses a collection of principles, concepts, and
constructs that empower developers to systematically reason about and manage concurrent exe-
cution. By adhering to a concurrency paradigm, developers can effectively address the challenges
associated with concurrent programming and ensure the reliable and efficient operation of their
software systems.

Concurrency paradigms encompass two fundamental aspects: parallelism and coordination.
Parallelism refers to the ability of a program to execute multiple tasks simultaneously, leveraging
the available computing resources for enhanced performance. It enables the distribution of work-
loads across different units of work, such as threads and processes, enabling efficient utilization of
resources.

In contrast, coordination plays a pivotal role in managing the interaction and synchronization
between concurrent tasks to ensure correct and predictable behaviour. It entails establishing
mechanisms for data sharing, task synchronization, and communication. Effective coordination is
essential for avoiding data races, which occur when multiple concurrent tasks access shared data
simultaneously, potentially leading to inconsistent or erroneous results. By enforcing synchroniz-
ation and orderly access to shared resources, coordination mechanisms mitigate the risk of data
races and maintain data integrity.

Therefore, a concurrency paradigm must strike a balance between parallelism and coordination,
harnessing the power of parallel execution while ensuring synchronization and coherence among
concurrent tasks. By effectively managing both aspects, developers can design concurrent programs
that are both efficient and reliable.
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3.2 Triangle of Concurrency

Most concurrency paradigms make the trade-off between Safety, Scalability and allowing Concur-
rent Mutation [25]. Figure 3.1 shows the triangle of concurrency and where different concurrency
paradigms lie on the triangle.

Most fundamental concurrency paradigms lack inherent memory safety, as they do not address
the challenges posed by Concurrent Mutation, delegating this responsibility to the programmer.
Ensuring safety in the presence of concurrent mutation becomes considerably more challenging and
necessitates the introduction of some global synchronization mechanisms. Typically, this involves
incorporating a garbage collector which adds a significant performance overhead, negatively im-
pacting scalability. Recently, however, a shift has been observed in several concurrency paradigms,
with the adoption of ownership-based approaches. These paradigms leverage ownership to provide
both scalability and memory safety, marking a significant advancement in concurrent programming
techniques.

The paradigm shift towards giving increased importance to scalability and memory safety in con-
currency programming is strongly influenced by the emergence of cloud computing. As cloud-based
systems and distributed computing platforms become prevalent, the need for concurrent programs
that can scale efficiently and ensure memory safety becomes paramount.

3.3 Why do we need a new concurrency paradigm?

The emergence of languages like Rust has demonstrated that ownership-based approaches can gain
popularity and receive positive feedback from developers [26]. Rust’s ownership system provides
memory safety guarantees and improves concurrency by enforcing strict ownership rules and elim-
inating data races. This success showcases the viability and effectiveness of ownership as a con-
currency paradigm.

Another existing concurrency paradigm that incorporates elements of ownership is the actor model
introduced by Agha [27]. Actors, as independent units of execution, encapsulate state and beha-
viour, resembling ownership over their internal resources. A key benefit of the actor model is that
it combines coordination and parallelism constructs within a single framework, making it simpler
for the developer to reason about programs. However, coordinating actions across multiple actors
presents inherent complexities. It is commonly acknowledged that actors are not well-suited for
performing atomic operations that involve multiple actors [28, 29].

Consider the scenario of implementing transactions across multiple tables, with each table repres-
ented by an actor. Coordinating these actors to ensure the atomicity, consistency, isolation, and
durability (ACID) properties of transactions becomes rather challenging [30]. To achieve transac-
tional coordination, various issues must be addressed. Ensuring all actors reach a consistent state
requires careful orchestration and synchronization mechanisms. Coordinating the order of opera-
tions, handling concurrent updates or conflicts, and maintaining isolation boundaries are complex
tasks. Additionally, failure handling and recovery pose further difficulties. When an actor repres-

Concurrent Mutation

Memory Safety ownership Scalability

Figure 3.1: The triangle of concurrency [25]
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enting a table fails during a transaction, ensuring proper rollback or recovery mechanisms across
multiple actors becomes a non-trivial task. These complexities faced while synchronising actions
across multiple actors in the actor model motivate the need for a new concurrency paradigm -
Behaviour oriented Concurrency (BoC).

However, in BoC, the focus is not on enhancing Actors, but rather on revisiting the fundamental
principles of Actors with the aim of unifying Actors and Transactions. BoC seeks to provide
a unified framework that seamlessly integrates coordination and parallelism with transactional
capabilities. This approach aims to simplify the coordination of concurrent activities, particularly
in scenarios where transactional consistency and atomicity are crucial.

3.4 An overview of BoC

BoC is designed to be the primary concurrency feature of an underlying programming language.
BoC enriches the underlying language with two core concepts: the concurrent owner or cown
(pronounced as “cone”), and the behaviour. BoC is further explored in this section through a
strongly typed pseudo-language with two key features:

e The when expression, which is used to spawn behaviours (c.f. Section 3.4.2).

e The cown[T] type, which represents contents of type T and has a constructor

3.4.1 Cowns

Cowns in BoC serve as unique entry points within the underlying language, providing a means to
protect and encapsulate data. A cown ensures that the data it holds can only be accessed through
its designated entry point, thereby establishing a clear boundary around the protected data in the
program.

Listing 3.1 shows how a cown restricts access to its contents. The variable hello_cown is of type
cown[String], and hence the attempt to access the contents of hello_cown, in this case the string
“hello”, is invalid.

1 main() {

2 hello_str = "hello"

3 hello_str.append (" world!") // valid

4

: hello_cown = cown.create("hello")

6 hello_cown.append ("Psych!") // invalid!!!

Listing 3.1: creating a cown to restrict access to data
The only way to access the contents of a cown is to spawn a behaviour requiring that cown.

3.4.2 Behaviours

Behaviours in BoC serve as the fundamental unit of concurrent execution. The when keyword
along with a set of cowns and a closure is used to spawn a behaviour. Listing 3.2 shows a contrived
hello world program in BoC. On Line 4, the contents of cown msg_cown are bound to msg i.e, the
contents of the cown can be accessed and mutated via the msg variable.

1 main() {
2 msg_cown = cown.create("hello world!")

3
4 when(msg = msg_cown) { // Behaviour b
5 print (msg)

6 }

Listing 3.2: A contrived hello world program in BoC

Once spawned, a behaviour can be run, i.e. its closure starts executing. only when all its required
cowns are available, and all other behaviours which happen before (c.f. Definition 3.1) it have
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run. In this case, the behaviour b can start running instantly as the msg_cown cown is available
and there are no behaviours that happen before it.

Once the required cowns are available, they are acquired atomically. This atomic acquisition
ensures exclusive access to the cowns and their associated data throughout the execution of the
closure. A behaviour cannot acquire additional cowns during its execution or release the cowns
before it has terminated. Upon termination of the closure, the behaviour terminates, and all its
cowns become available.

3.4.3 Behaviour Ordering

The distinction between spawning and running of behaviours is crucial in BoC. When a behaviour
is spawned using the when keyword, the spawning process is synchronous, meaning that it occurs
immediately. Behaviours are spawned without delay, allowing for the concurrent execution of
multiple behaviours. Contrarily, the running of behaviours is asynchronous and is subject to
certain conditions. A behaviour can only start running when:

e all the required cowns it stated at spawn time are available
e all the behaviours that happen before it, have completed their execution

Definition 3.1 (BoC happens before ordering). A behaviour b will happen before another be-
haviour b’ iff b and b’ require overlapping sets of cowns, and b spawned before b’. It is often
represented as b < b', read b happens before b’

Listing 3.3 shows a contrived hello world program in BoC with two behaviours, namely, b; and
bs. Since the spawning of behaviours is synchronous, b; will spawn before by. Causally using
Definition 3.1, one can say by < bs.

main () {
msg_cown = cown.create("hello world!")

wvhen(msg = msg_cown) { // b1
print ("For the first time \n")
print (msg)

}

when (msg = msg_cown) { // b
print ("This is getting old now \n")
print (msg)

3 1

Listing 3.3: A contrived hello world in BoC with 2 behaviours

In Listing 3.4, there is no ordering between behaviours b; and by as there is no overlap between
their required cowns. Hence, The program is incorrect and either string, “hello” or “ world!” can
be printed first.

main () {

hello_cown
world_cown

cown.create("hello")
cown.create (" world!")

when(hello = hello_cown) { // by
print (hello)

}

when (world = world_cown) { // bo

print (world)
}

Listing 3.4: Incorrect hello world in BoC with 2 behaviours

3.4.4 Nesting Behaviours

Nesting behaviours can be useful to enforce happens before ordering in BoC programs. Consider
Listing 3.5, in which the programmer is acquiring an account to perform some operations on it
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and is maintaining a sequential log. We know that b; will spawn before by due to the synchronous
nature of spawns, which further implies b; < by. Since by will always run after by, bg will always
spawn after b; and hence one can say by < bs

1 main() {
2 log_cown cown.create (Log.create ())

cown.create (Account.create())

o

3 acc_cown
1

when(log = log_cown) { // b
6 print ("start log")

7 }

9 when (acc = acc_cown) { // b

10 when(log = log_cown) { // b3

11 log.append ("acquired account")
12 }

14 }

Listing 3.5: Creating a sequential log in BoC using nesting

However, there are certain caveats that arise when nesting behaviours. The contents of a cown
associated with a behaviour, say b, can not be accessed by another behaviour inside b.

Let’s say, in the previous example, the programmer to print a more descriptive message to the log
and then updated bo, depicted by Listing 3.6. Due to the atomic nature of the acquisition of cowns
discussed in Section 3.4.2, behaviour b3 does not have access to the contents of hello_cown and
hence Line 3 is invalid.

when (acc = acc_cown) { // b2

when(log = log_cown) { // b3
log.append("acquired account belonging to", acc.owner()) //invalid!!!!

(S

oo W

}
Listing 3.6: Incorrectlty creating a descriptive log - caveats of nesting

The correct way to create a more descriptive log in by is given by Listing 3.8.

1 when(acc = acc_cown) { // b2
2 owner_acc = cown.create (acc.owner ())
when(log = log_cown, owner = owner_acc) { // b3
4 log.append("acquired account belonging to", owner_acc)
5 }
6 .
7 }

Listing 3.7: Correctly creating a descriptive log - caveats of nesting

1 x = cown (0)

; when(ix = x) {

1 ix =1 // C
5 }

7 when(ix = x) {

8 1X=2// CQ
o }

Listing 3.8: Correctly creating a descriptive log - caveats of nesting

3.5 Benefits of using BoC

Reasoning about concurrent programs is particularly challenging due to the presence of parallelism,
which requires coordination among concurrent tasks. BoC aims to simplify the developer’s exper-
ience by providing when as a unified construct that combines coordination and parallelism. BoC’s
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unified construct provides a higher-level abstraction that encapsulates both coordination and par-
allelism, enabling developers to reason about and manage concurrency more easily. This unified
construct in BoC offers several guarantees, ensuring desirable properties for BoC programs:

e Data race freedom: BoC guarantees that all programs written in BoC are free of data races.
This eliminates the unpredictable and erroneous behaviour that can arise from concurrent
accesses to shared data without proper synchronization.

e Deadlock freedom: BoC ensures that programs cannot indefinitely halt due to concurrent
processes waiting on each other. This prevents scenarios where multiple processes are unable
to proceed, leading to system-wide stalling or deadlock situations.

e Flexible co-ordination: Access to multiple independent resources is allowed. Like actors,
BoC decomposes state into separate entities (cowns). However, actors also require the scope
of its concurrent units (behaviours) to be confined to a single entity [Agha and Hewitt
1987; Agha 1985]. With BoC, this is not the case: a behaviour can have access to multiple
entities (cowns) allowing for flexible coordination across behaviours. This enables developers
to efficiently manage and coordinate concurrent activities that involve different resources.

e Restricted determinism: Through the happens before order, BoC provides an implicit
order of fine-grained concurrency units, offering a level of determinism within the concur-
rent program. Since this restricted determinism comes from the source level semantics, the
developer can reason about the program correctness and program performance with relative
ease.

3.6 Current state of BoC

Currently, BoC has been defined using a formal model and has been demonstrated practically
through a C++ library that functions as a runtime for BoC and a C# executable model [31, 32].
The formal model for BoC (c.f. Appendix A) is defined parametric to an underlying language.
The underlying language is expected to provide a means to separate the heap into disjoint sets
with unique entry points, for example through a type system as in [33].
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Chapter 4

Miniature Behaviour Oriented
Concurrency: MiniBoC

This chapter presents MiniBoC, a simple language that has the BoC concurrency paradigms. A
formal operational semantics for MiniBoC is given and the intricacies of BoC are further explored
(through MiniBoC).

The development of BoC has undergone notable changes over the course of this project. The
initial formal model, referred to as the old formal model or operational semantics, is presented
in Appendix B. However, it has been recognized that the old semantics had a significant draw-
back related to the isolation constraints imposed on the underlying languages (c.f. Section B.2).
These isolation constraints led to a considerable increase in the complexity of the BoC operational
semantics.

The recognition of this drawback prompted the need for reevaluation and refinement of the BoC
semantics. The revised and improved formal model, which is the focus of this project, will be
referred to as the new formal model or operational semantics presented in Appendix A. As men-
tioned in Section 3.6, this model defers the isolation guarantees to the underlying language and
hence does not provide a model for cowns.

MiniBoC, developed at the same time as the new BoC operational semantics, is building off the
old operational semantics. It discards the concept of an underlying language and gives operational
semantics for behaviours and cowns in a unified manner.

4.1 MiniBoC Syntax

The MiniBoC language is parametrised by the following sets: the set of values, Val, ranged over by
v,v1, ... with N U {true, false} C Val; the set of variables, Var: ranged over by x,y, ...; the set of
cown identifiers (also referred to as cowns) Cown, ranged over by k, k1, ...; the set of function names,
FName: ranged over by f, fi1, ...; the set of behaviour names, BName ranged over by b, b1, b, ..., with
distinguished element p € BName. p represents the standard value for BName.

Definition 4.1 (MiniBoC Expressions). The set of expressions, Exp ranged over by E, Ey, Eo, ...,
is given by:
E:=v|z|E+E|E<E]|..

where v € Val,x € Var.
Notation. ... indicates that the expressions can be arbitrarily extended as required

Definition 4.2 (Program Variables for MiniBoC Expressions). The set of program variables for
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a MiniBoC expression E, denoted by, pv(E) is defined inductively:

pv(v) = ¢

pv(x) = {x}
pv(EL + Ez) = pv(Er) U pv(E2)
pv(Er < E») = pv(E1) U pv(Es)

Definition 4.3 (MiniBoC Program Stores). The program stores of MiniBoC consists of the fol-
lowing:

Variable Store : o < Var — Val | Cown

o represents the variable store in which a variable can either map to a value or a cown identifier.
We say that the variable x has value w in the store ¢ if o(x) = w where w is either a value v or a
cown identifier .

Cown Store : A 4! cown — Val x BName

A represents the cown store in which a cown identifier maps to a value and a behaviour name. The
value represents the contents of that cown. The behaviour name, b represents the most recently
spawned behaviour that requires this cown to run.

We say that a cown has a cown identifier x and contents v in cown store A if A(k) = .

Definition 4.4 (MiniBoC Commands). The set of MiniBoC commands, Cmd, ranged over by,
C,Cy, ..., is defined by:

Cu=y:=F (assignment)
|c;C (sequential composition)
| if F then {C} else {C} (if)
|z :== f(E) (function call)
| skip (skip)
| x := cown(E) (cown creation)
| when (ix = %) {C} (when)

where x,y,z € Var, %,ix € List(Var), F € Expr, F € List(Expr), f € FName. MiniBoC has 2
BoC specific commands - cown creation and when, whereas the rest are standard.

The cown creation command is used to create a cown and assign the cown identifier to a variable.
The when command is used to spawn a behaviour requiring some cowns while also binding the
contents of those cowns to variables that are accessible in the body of the behaviour.

Notation. Generally, x is used for variables that map to a cown identifier in the variable store, y is
used for variables that map to a value, and z is used when the variable can map to either in the
variable store.

Definition 4.5 (Program Variables for MiniBoC Commands). The set of program variables for
MiniBoC commands is defined inductively on the structure of commands as follows:

pv(y = E) = {y} u pv(£)

pv(Cy;C2) = pv(C1) U pv(Ca)
pv(if E then {C;} else {Ca}) = pv(E) U pv(Cy1) U pv(Ca)

pe(z = f(EIL)) = (=) 0 Upv(E)
pv(skip) = ¢
pv(x = cown(F)) = {x} u pv(E)

pv(when (ix = %) {C}) = {ix} u {&} U pv(C)
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Notation. The function call z := f(Ei|?=1) denotes a function f with n arguments F1, ...E,

Definition 4.6 (MiniBoC Variable Types). In MiniBoC, variables have one of 3 types

T | cown[T] | content [T]

A variable of type T refers to a variable that maps to a value of type T in the variable store. It is
typically represented with y,y’, ....

A variable of type cown[T], sometimes referred to as a cown pointer, maps to a cown identifier in
the variable store. The cown identifier in the cown store maps to a value of type T. Such a variable
can only be created using the cown creation command. It is typically represented with x, x’, ...

A variable of type content [T] refers to a variable that maps to a value of type T in the variable
store. What differentiates this type from T is that variables of this type are bounded to the contents
of a cown. Consequentially, such variables can only be created by the when command. They are
typically represented by ix, iy, ...}

It is important to note that T is a primitive type and represents types such as integers and booleans.

4.1.1 When Closure Capture

Due to BoC'’s reliance on an underlying language, MiniBoC makes a choice with respect to the
closure capture of the when command. BoC only asks for isolation from the underlying language,
and hence a mutable reference of these variables can not be used in the body of a behaviour. In
MiniBoC, a variable declared outside the closure of a behaviour can be used in the body of that
behaviour if the variable is copyable. The value of the variable is copied into a variable of the same
name in the body of the routine. Variables of type content [T] are not copyable. Intuitively this
makes sense as one should not be able to read the contents of a cown without acquiring the cown.
This intuition has been discussed as a caveat of nesting behaviours in Section 3.4.4.

Hence, in a well-formed BoC program, a variable of type content[T] declared outside the body
of a behaviour will never be used inside the body of that behaviour.

Definition 4.7 (Copyable Program Variables for MiniBoC Commands). The set of copyable pro-
gram variables for MiniBoC commands is defined inductively on the structure of commands as
follows:

cpv(when (ix = %) {C}) = pv(when (ix = %) {C}) / {ix} (when command)
cpv(C) = pv(C) (all other commands)

Definition 4.8 (MiniBoC Behaviour States). The behaviour state of MiniBoC consists of the
following:

Spawned Behaviours State : S ' BName — VarStore x BName® x [Cown — Var] x Cmd

The spawned behaviour state (S) consists of the local behaviour state, oy, the set of behaviours
that happen before the spawned behaviour (c.f. Definition 3.1), {b}, the cown variable mapping
representing the variables bound to the contents of a cown, & (or [# + ix]), and the behaviour
body, C.

Running Behaviours State : R < BName — VarStore x [Cown — Var] x Cmd

The running behaviour state (R) consists of the local behaviour state, oy, the cown variable mapping
representing the variables bound to the contents of a cown, § (or [# + ix]), and the behaviour
body, C.

The choice of having a cown routine mapping in the routine state is further justified in Section
4.1.2

Notation. we use T* for sets and List(T') for lists

IThe prefix i is used for the word “inner” as the current refers to a value that exists inside a cown
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Definition 4.9 (MiniBoC Function Contexts). A MiniBoC function context, FContext is defined
as follows: ot
Function Context : v = FName — List(Var) x Cmd x Exp

A function context comprises finite function parameters given by a finite list of distinct variables,
{%} and the function body given by the command C € Cmd , and a return expression E € Expr.

Notation. f(Z) = {C;return FE} is used to imply v(f) = ({Z},C, F) for an implicit function
context ~.

Definition 4.10 (MiniBoC Program). A MiniBoC program, represented by p, is given as follows:

Program : p 4f FContext x Cmd

4.1.2 Subtlety of Cown Aliasing

Cown aliasing in BoC can be a subtle aspect, particularly when it occurs inside a behaviour.
To explain this subtlety more clearly, we can turn to MiniBoC, where the distinction between a
cown pointer and a cown identifier is more explicit. Consider the MiniBoC program provided in
Listing 4.1, which demonstrates cown aliasing inside a behaviour.

x1 := cown(0)
x2 := cown (0)

when(ix1l = x1, ix2 = x2) {
x1 := x2
ixl := 1

Listing 4.1: MiniBoC program with cown aliasing

In this program, we have two cown variables, x1 and x2, both initialized with the same value of 0.
On Line 3, the variable store o for this program is represented as [x1 — k1,%x2 — K2], where Kk
and k9 are cown identifiers.

It is crucial to note that on Line 4, the variable ix1 is bound to the cown identifier x;, not the
variable containing the cown identifier x1. This distinction is essential to understand because the
variables containing the cown identifiers, such as x1 and x2, can be mutated at any point and,
therefore, cannot be relied upon for maintaining the integrity of the program’s logic.

This also justifies the presence of the cown routine mapping in the running and spawned behaviour
states R and S.

4.2 MiniBoC Semantics

A formal description of the nature of MiniBoC is given using small-step operational semantics.
The expressions are evaluated with respect to a variable store. In MiniBoC, only commands are
side-effecting and expressions are not side-effecting.

Definition 4.11 (MiniBoC Expression Evaluation Function). Let o € VarStore be a variable
store, the expression evaluation function, E[[-]], € Exp — Val is defined inductively as follows:

Ellvlle = v
El[x]]le = o(x), wherex € dom(s)
E[[E1 + Ex]le = E[[Er]]ls + E[[E2])s, where+ : N x N » N
E[[EL > Ealls = E[[E1]ls > E[[E=]]s, where > N x N — {true, false}

Definition 4.12 (MiniBoC Operational Semantics). The small-step operational semantics for
MiniBoC is described in this section using the judgements o, A, S, R, C 17 o' ,A',S'" R C.
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. b . . .
The b in — corresponds to the current running behaviour. When irrelevant to the rule, the current
behaviour b is omitted from.

The behaviour name main is used for commands not running in a behaviour, i.e. the top level
program commands. Thus, we can say that b = main v b € dom(R)

Assignment: Evaluate the expression E using variable store o. If this evaluation is defined
with value v, update the variable store accordingly o[y ~ v]. Otherwise, fault.

Sequential Composition: Evaluate the command C; with the current program state and
then, and return the updated command and state sequentially composed with Cs.

b
o,A,S,R,C; —, o, A",S" R, C]

: SEQ-CoMP-LEFT
g, Aa Sa R7 C17 C2 >y 0',7 A,a Slv R? Clla CQ

If C; is equivalent to skip, return Cs.

SEQ-COoMP-SKIP
0, A, S, R, skip;Cy — 0,A, S, R, Cy

If Condition: Evaluate the expression F using the variable store o. If ' does not evaluate
to a boolean, fault. If E is true, return C; otherwise, if F is false, return Cs.

E[[E]]s = true

Ir-TRUE
o,A,S,R,if E then {C;} else {C2} —, 0,A,S,R,C;

E[[E])s = false
0,A,S, R, if E then {C;} else {C2} —, 0,A,S,R,Cy

Ir-FALSE

Skip: 0, A, S, R, skip is the answer configuration and hence, no rule exists for it.

Function Call: If f ¢ v, fault. Otherwise, f(Z){C;return E'} € ~. Evaluate F using
o. If undefined, fault. If defined with values w0, create a store oy containing the function
parameters, T, initialised with their respective values, w. Evaluate C using oy and the
remaining program state. If this faults, fault. If it succeeds, evaluate E’ using the new
variable store O’}. If this is undefined, fault, otherwise, return the variable store o[y — w']
and the remainder of the updated program state.

f(@){C;return E'} e v  E[[E]l, =W oy = [T
of, A8, R,C =% oy, A, S, R, skip 5[[E']]Urf = w o’

0,A,S,R,z = f(E) -, o/,A", S, R, skip

)

]
o[z » w']
Func CaLL

Cown Creation: FEvaluate the expression F using variable store o. If this is defined,
generate a new and unique cown identifier k and update the variable store and cown store
accordingly - o[x = k], A[k ~ (v,p)]. Otherwise, fault. Note that u, the standard value
for BName is used, as no behaviour requiring x has spawned yet and hence no behaviour is
waiting on k.

El[E]]ls = v fresh. k o' =o[x » K] A" = Al - (v, p)]

CC
o,A, S, R,x := cown.create(E) —, o', A", S, R, skip

Spawn Behaviour: If X map to cown identifiers K, get a new unique behaviour name, b
otherwise fault. Evaluate b which represents the set of behaviour names that happen before
the behaviour that is being spawned (i.e. b). Update the cown store as b is the most recently
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spawned behaviour requiring cowns . Add b to S with a copy of the global state o, {B}, the
cown variable mappings [£ + ix] and the behaviour body C.

) o(x) = & fresh. b . )
A(R) = (U4, bs) A" = A[E — (U,,0)] S" = 8[b ~ (0,{bs},[F = ix],C)]

= B-SpawnN
o,A, S, R, when (ix = %) {C} -, 0,A", S, R, skip
Notation. [G + b] is shorthand for [a; ~ by, ..., a, = by] given that @ = [a1,...,an] A b =
[b1, .oy b ]-
Notation. [d +~ b] is shorthand for [a; ~ b, ...,a, — b] given that @ = [ay, ..., an].

e Run Behaviour: For a spawned behaviour (i.e. b € dom(S)), obtain the spawned behaviour
state (o, {b}, [F =~ ix],Cp) from S. If all the behaviours in {b} have finished running (i.e.
their behaviour body is skip or the behaviour is p), remove b from S. Evaluate % to ¥ in
the cown store, if this faults, fault, otherwise add b to R with updated state o,[ix + @], the
cown routine mapping and the behaviour body Cy.

b e dom(S)  S(b) = (o0, {b}, [k = 1x],C)
S" =8\ {b} Vbeb (b=pv R(b) = (--,skip))
A(R) = 0 R' = R[b ~ (op[ix ~ 9], [F = ix],Cp)]

— B-Run
o, A S R,C—, 0,A8 R,C

e Progress Behaviour: Any running behaviour (i.e. b € dom(R)) can make progress at
any given point. Obtain the running behaviour state, (o3, [£ + ix],Cp), from R. Evaluate
Cp using the behaviour-local variable store and the remaining global state and update R
accordingly

b € dom(R) R(b) = (0v,9,Cp)
04, A, S, R.Cy >y 0}, NS R.C; R =R[b~ (0},6.})]

7 B-PROGRESS
o,A,S,R,C —, o,A",S" R',C

e Finish Behaviour: This rule is just a special case of the previous rule. If the behaviour
body Cp evaluates to skip, it is vital that the cown contents are updated. This update of
the cown contents has to happen now to prevent other behaviours from accessing outdated
information.

b € dom(R) R(b) = (o, [F = ix],Cp)
oy, A, S, R, Cp =y 0y, A, S", R skip R’ = R[b ~ (o}, [k =
op(ix) = ¥ A(k) = (-, b) A" = N'[E — (8,b
o,A,S,R,C —», 0,A",S" R C

ix], skip)]

)]

B-FINIsH

4.3 Comparing MiniBoC with the new BoC operational se-
mantics

Parallel to the development of MiniBoC, the new BoC operational semantics were introduced.
These operational semantics, as depicted in Appendix A, take a different approach compared to
the traditional language semantics.

Rather than defining a standalone programming language, BoC aims to be a concurrency paradigm
that can be integrated into existing programming languages. As such, the operational semantics
of BoC are designed to function more like a library of rules that can be added to an existing
language.

When comparing the new operational semantics with the MiniBoC semantics, the most significant
difference is the absence of the cown state from the former. Due to BoC’s aim to be a library of
rules, the cown state is deferred to the underlying language, which is captured by the MiniBoC
semantics.
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Another difference is the way both semantics approach spawned behaviours. MiniBoC has a
Spawned Behaviour State, S, whereas the new semantics have a global queue-like structure for the
pending behaviours, P.

4.4 Further Improvements

There are 3 main areas of improvements for MiniBoC:

e Adding more commands: By extending MiniBoC to include additional commands like
loops (e.g., for and while loops), the language becomes more expressive and flexible.

e Supporting objects in cowns: Introducing support for objects within cowns expands the
capabilities of MiniBoC. With object support, programmers can encapsulate data, providing
a higher level of abstraction. Omne particularly intriguing capability that arises from ob-
ject support in cowns is the ability to nest cowns. Nesting cowns allows for a hierarchical
organization of shared data and behaviours, providing a structured approach to managing
concurrent access. With nested cowns, developers can establish a multi-level structure where
cowns can contain other cowns, forming a parent-child relationship.

e Introducing different types of cowns: In MiniBoC, cowns are used to protect data. More
accurately, cowns are used to prevent two operations on data - read and write. An interesting
opportunity to expand MiniBoC, as well as the broader BoC paradigm, is to introduce read
cowns and write cowns that only protect the read and write operation on data stored inside
a cown.
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Chapter 5

GIL-+

In this chapter, we introduce GIL+ as a target language for translating MiniBoC programs. GIL+
is designed to provide a low-level representation of MiniBoC programs, breaking them down into
their most fundamental atomic actions. This approach is similar to how GIL (Gillian Intermediate
Language) is used for existing languages. A small-step operational semantics for GIL+ is provided
in the chapter.

By providing a formal and precise representation of MiniBoC programs, GIL-+ facilitates analysis,
reasoning, and verification of MiniBoC programs and the broader BoC paradigm. The evaluation
of GIL+ sheds light on its effectiveness as a target language and its ability to capture the essential
aspects of BoC and other adjacent concurrency paradigms.

In this chapter, we also evaluate the choices made by GIL+. Upon evaluation, we present an
alternate BoC paradigm named FlexibleBoC.

5.1 GIL+ Objectives

Gillian, as discussed in Section 2.4, currently supports sequential programs through the Gillian
Intermediate Language (GIL) outlined in Section 2.5. To extend Gillian’s capabilities for reason-
ing about MiniBoC programs, an alternative intermediate language called GIL+ has been intro-
duced.

While developing GIL+, its design scope was not limited solely to MiniBoC. The language aims
to achieve the following objectives:

e Facilitate the analysis of MiniBoC: GIL+ provides features constructs that enable easier
analysis of concurrent programs in the BoC paradigm. It offers support for fine-grained
granular reasoning about MiniBoC.

e Flexibility to emulate other concurrency paradigms: GIL+ is designed to be versatile and
adaptable, allowing it to emulate various concurrency paradigms beyond BoC. It provides
mechanisms to model and reason about other concurrency models closely related to BoC,
such as the actor model and other models such as async-await and Concurrent Separation
Logic (CSL) as well. GIL+ aims to allow reasoning about concurrency paradigms that lie at
the base of the triangle of concurrency (c.f. Figure 3.1).

e Exploring BoC variants: Although orthogonal to analysis, GIL+ serves as a platform for
exploring different variants and extensions of the BoC paradigm. It allows researchers and
developers to experiment with new ideas and variations within the BoC framework. By
providing this flexibility, GIL+ supports the exploration and advancement of BoC as a con-
currency paradigm.
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5.2 An informal overview of GIL-+

In GIL+, the introduction of routines provides named asynchronous units of work, serving as the
fundamental building blocks of concurrency. Routines enable the programmer to organize and
structure concurrent operations within the program.

Additionally, GIL+ recognizes the importance of cowns in BoC and other ownership-based concur-
rency paradigms. Consequently, GIL+ incorporates a version of cowns that requires the explicit
creation of cown groups. The ownership of these cown groups is explicitly managed by routines,
which are responsible for acquiring and releasing ownership as needed. Cown groups are only
associated with routine names, and each routine can have its own cown group.

This explicit control over cown groups enhances the programmer’s ability to manage ownership
and ensures a clear delineation of responsibilities between routines and the associated cowns.By
providing this level of control and clarity, GIL+ enhances the expressiveness and precision of BoC
programming.

In GIL+, routines serve a similar purpose as behaviours in MiniBoC, acting as units of concurrency.
However, one key distinction is that routines do not have a happens-before order imposed on them.
Furthermore, GIL+ introduces a construct that enables a routine’s execution to be dependent on
the termination of another routine. This construct allows for synchronization between routines,
where one routine can wait for the completion of another before proceeding.

5.3 GIL+ Syntax

The GIL+ language is parametrised by the following sets: the set of wvalues, Val, ranged over
by v, v1,... with N U {true, false} € Val; the set of variables, Var: ranged over by x,y,...; the
set of cown identifiers Cown, ranged over by k, K1, ...; the set of function names, FName: ranged
over by f, fi,...; the set of routine names, RName ranged over by ¢, %1, s, ..., with distinguished
elements p, main € RName. p represents the standard value for RName and main is a reserved
routine name.

Definition 5.1 (GIL+ Expressions). The set of expressions, Exp ranged over by E, Ey, Es, ..., is
given by:
E=:=v|x|E+E|E<E|..

where v € Val, x € Var.

Definition 5.2 (Program Variables for GIL+ Expressions). The set of program variables for an
expression E, denoted by, pv(E) is defined inductively:

pv(v) = ¢
pv(x) = {x}
pv(E1 + Ey) = pv(E;) U pv(Es)

pv(E1 < Ep) = pv(E1) U pv(E2)

Definition 5.3 (GIL+ Program Stores). The program stores of GIL+ comprises the following:

Variable Store : ¢ < Var — Val | Cown | RName”®

o represents the variable store in which a variable can either map to a value, a cown identifier or
a set of routine names. We say that the variable x has value w in the store o if o(x) = w where
w is either a value v, a cown identifier x or a set of routine names {7}.

Cown Store : A %! cown — Val

A represents the cown store in which a cown identifier maps to a value. The value v represents
the contents of that cown.
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Definition 5.4 (GIL+ Commands). The set of GIL+ commands, Cmd, ranged over by, Cq, Ca, ...is
defined as follows:

Cmd, C i=y = F (assignment)
| C1;C2 (sequential composition)
| if F then {C} else {Cq} (if
|z = f(E) (function call
| skip (skip
| x := cown(F) (cown assignment

| [x] == E (cown mutate

| wait(rs) (wait
| rs = LAS({%},?) (lookup and set
| take (take

| give (give

)
)
)
)
)
|y = [x] (cown lookup)
)
)
)
)
)

| start ¢ with z {C} (start routine

where x,y,rs € Var, E € Expr, E ¢ List(Expr)r € RName, f € FName. GIL+, similar to MiniBoC
has some standard commands - assignment, sequential composition, if, function call and skip.

Notation. Generally, x is used for variables that map to a cown identifier in the variable store, y is
used for variables that map to a value, rs is used for variables that map to a set of routine names,
and z is used when the variable can map to any of them in the variable store.

5.3.1 Accessing Cowns in GIL+

In GIL+, similar to MiniBoC, several standard commands such as assignment, sequential compos-
ition, if statements, function calls, and skip are available. However, there is a distinction in how
the contents of cowns are accessed and manipulated compared to MiniBoC.

In MiniBoC, behaviours bind the contents of a cown to a variable at the time of spawning. This
allows for direct referencing and manipulation of the cown data using the assigned variable. How-
ever, in GIL+, this concept is not present. Instead, GIL+ employs the [x] syntax to represent the
contents of a cown. This syntax enables accessing and modifying the data stored within a cown in
GIL+ programs through the use of cown mutate and cown lookup commands.

The introduction of the [x] syntax in GIL+ serves a specific purpose - enabling direct assertions
about cowns. In the BoC paradigm, cowns are updated indirectly through other variables, which
can make it more challenging to make pre- and post-condition assertions that directly affect cowns.
By using the [x] syntax, GIL+ aims to provide a means to express assertions and conditions
explicitly targeting cown contents. Such assertions are pivotal for specification and verification of
properties related to cowns.

5.3.2 Lookup and Set (LAS)

The LAS (Lookup and Set) command in GIL+ is utilized to create cown groups. The command
rs := LAS({%X}, ) is used to form a cown group that can be subsequently taken by a specific routine.
It then assimilates these routine names and updates the variable state accordingly. This ensures
that the cown group is properly formed, and the variable rs contains the set of routine names
to which the cowns were last added. It is worth noting that cown groups in GIL+ can overlap,
meaning that a cown can be part of multiple cown groups simultaneously.

The introduction of the LAS command in GIL+ serves two main purposes. Firstly, it facilitates
the creation of cown groups, allowing multiple cowns to be grouped together. Ownership of these
groups is taken and given by the eponymous take and give commands. This enables routines
to have explicit ownership over a set of related cowns. Secondly, the LAS command provides a
dynamic lookup mechanism for routines that intend to take ownership of a cown group. This
feature of LAS allows the programmer to make ordering guarantees about routine execution based
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on information related to cowns. For e.g. by looking up the previous routine names associated
with the cowns in the group, the LAS command allows a routine to determine which routines should
have completed their execution before it can acquire ownership of the cown group. This dynamic
lookup capability is vital for translating MiniBoC to GIL+.

5.3.3 Starting Routines in GIL+

The start-with command is used to spawn a new routine while capturing a set of variables ({Z}).
The variables in {Z} are copied into the body of the routine and can still be used throughout the
program. However, the changes made to these variables within the body of the routine are only
reflected locally. Any spawned routine can start running at any given time. Note that when the
set of variables is empty, {Z} = ¢, start ¢ {C} is used as syntactic sugar for start r with ¢ {C}.

The wait command is blocking and allows the routine calling this command to wait until a set of
routines finish executing. A program variable is used to represent the set of routine names. This
command is useful for synchronising action across multiple routines.

Definition 5.5 (Program Variables for GIL+ Commands). The set of program variables for GIL+
commands is defined inductively on the structure of commands as follows:

pv(y = E) = {y} v pv(E)
pv(C1;Cz) = pv(C1) U pv(C2)
pv(if F then {C;} else {Cs}) = pv(E) U pv(Cy) U pv(Cs)

pv(z = f(B)) = {z} U U pv(E:)

pv(skip) = ¢
pv(x := cown(E)) = {x} U pv(E)
pv([x] = E) = {x} v pv(E)
pv(y = [x]) = {x} U {7}
pv(wait(rs)) = {rs}
pv(rs := LAS({%},?¢)) = {rs} u {%}
pv(take) = ¢
pv(give) = ¢
pv(start r with z {C}) = {Z} U pv(C)

Definition 5.6 (Routine Names for GIL+ commands). The set of routine names for variables is
defined as follows:

ro(start ¢ with Z {C}) = {¢} U rn(C) (for the start-wth command)
n(C) = ¢ (for all other commands)

Definition 5.7 (GIL+ Routine States). The routine state for GIL+ comprises:

Spawned Routines : S 4f RName — VarState x Cmd

S represents the set of spawned routines. At any given time, any routine can start running. An
arbitrary entry in S is shown - S(r) = (o, C) where ¢ is the routine name, o, is state local to that
routine and C is the body of the routine.

Running Routines : R 4f RName — VarState x Cown* x Cmd

R represents the set of running routines. These routines can make progress at any given time and
interleave arbitrarily. An arbitrary entry in R is shown - R(z) = (o,, {<}, C) where ¢ is the routine
name, o, is the variable store local to that routine, {<} are the cowns owned by the routine ¢ and
C is the body of the routine. Only the owner routine of a cown can mutate or lookup its contents.
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Definition 5.8 (GIL+ Cown Group State). The cown group state in GIL+ comprises:

Cown-Routine Mapping : A 4 cown — RName

A represents a mapping from cown to routines. An arbitrary entry in A is shown - A(k) = ¢ where
k is a cown identifier and r is the routine name to whose group this cown was last added.

Cown Groups : T' %' RName — Cown*

I" represents groups of cowns formed by the LAS command. An arbitrary entry in I' is shown -
I'(¢r) = {R&} where ¢ is the routine name that has grouped the cowns K. ¢ can call take to take
ownership of this group of cowns.

Definition 5.9 (GIL+ Function Contexts). A GIL+ function context, FContext is defined as
follows:
Function Context : v 4" FName — List(Var) x Cmd x Exp

A function context comprises finite function parameters given by a finite list of distinct variables,
{%} and the function body given by the command C € Cmd , and a return expression E € Expr.

Notation. f(Z) = {C;return FE} is used to imply v(f) = ({%},C, F) for an implicit function
context ~.

Definition 5.10 (GIL+ Program). A GIL+ program, represented by p, is given as follows:

Program : p 4l FContext x Cmd

5.4 GIL-+ Semantics

A formal description of the nature of GIL+ is given using small-step operational semantics. The
expressions are evaluated with respect to a variable store. Similar to MiniBoC, in GIL+, only
commands are side-effecting and expressions are not side-effecting.

Definition 5.11 (GIL+ Expression Evaluation Function). Let o € VarStore be a variable store,
the expression evaluation function, E[[-]], € Exp — Val is defined inductively as follows:

Ellvlle = v
&zl = o(x), wherex € dom(s)
E[[Er + Ex]le = E[[En]]e + E[[E2]]s, where+ : N x N -, N
El[EL > Eq]lo = E[[EL]]le > E[[E2]]os where > N x N -, {true, false}

Definition 5.12 (GIL+ Operational Semantics). The small-step operational semantics for GIL+
is described in this section using the judgements o, A, A, T, S, R, C in, o, AN TV, S R',C. «
represents the routine name in which the small step transition is occurring. When irrelevant to
the rule, v it is omitted. An important property of r is that + € dom(R).

Note that main is a reserved routine name that is used as the routine name for transitions occurring
at the top level of the program and is the only routine name that does not appear in R.

e Assignment: Evaluate the expression E using variable store o. If this evaluation is defined
with value v, update the variable store accordingly o[y ~ v]. Otherwise, fault.
EllE]l, =v o' =oly = v]

; — ASSN
o, AN, S, Ry = E -, 0,AA, T, S, R, skip

e Sequential Composition: Evaluate the command C; with the current program state and
then, and return, the updated command and state sequentially composed with Co

o,A,A,T, S, R,C; &, o/, AN, T',S" R, C,
o, A,A,T,S, R, C1;Cy -, o/, AN T, S" R, C; Cy

SEQ-CoMP-LEFT
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SEQ-COMP-SKIP

o,A,A,T, S, R, skip;Cy -, o/, A", A", T", 8", R, Cy

e If Condition: Evaluate the expression E using the variable store o. If E does not evaluate
to a boolean, fault. If F is true, return the program state along with C; otherwise, if F
evaluates to false, return the program state along with C;.

E[[F]]s = true o,A,A,T,S,R,C; —, o', A", AT, S" R, skip

Ir-TRUE
o,A,A,T,S, R, if E then {Ci} else {Co} -, o', A", A", T", 5", R’ skip

E[[F]], = false o, A,A,T',S,R,Co —», o/, A", A", T, S" R, skip

- T T T A o — IF-FALSE
o, A, AT, S, R, if E then {C;} else {Co} —», o', A", A"|T", S R, skip

e Skip: 0, A, S, R, skip is the answer configuration and hence, no rule exists for it.

e Function Call: If f ¢ ~, fault. Otherwise, f(#){C;return E'} ¢ . Evaluate E using
o. If undefined, fault. If defined with values w0, create a store oy containing the function
parameters, Z, initialised with their respective values, w. Also rename all the routine names
that are present in C using, renameRoutines defined as follows:

renameRoutine(C) = C[Vr € rn(C). v/v]

where 7 corresponds to the number of times this function has been called. Evaluate renameRoutines(C)
using oy and the remaining program state. If this faults, fault. If it succeeds, evaluate E’

using the new variable store U}. If this is undefined, fault, otherwise, return the variable

store o[y — w’] and the remainder of the updated program state.

f(@){Creturn E'} e v E[[E]l, =@ of = [Z = @]
Cs; = renameRoutines(C) or, A,A,T',S,R,C iw o, AN T, 8" R, skip
E[E o, =w o' = o[z » w]

= Func CaLL
o, AT, S Rz = f(F) i>,y o, A", N T", 8" R skip

e Cown Assignment: Evaluate the expression E using variable store o. If this evaluation
is not defined fault, otherwise if defined with value v, with a fresh cown identifier x, return
new state o[z ~ k] and new cown state A[x — v]. Additionally, update the cown-routine
mapping with the new cown - A[k — u].

ElE]]s = v fresh. ko = o[x » K] A" = Alk = v] AN = Al = ]
o, A,A,T,S,R,x := coun(E) -, o', A", A",T, S, R, skip

C-AsGN

e Cown Mutate: If x maps to a cown identifier £ in the variable store, and this cown identifier
is owned by the current running routine, evaluate F using ¢ and return the new cown state
A[k + v]. If x does not map to a cown identifier, fault.

o(x) = K R(z) = (-, {k},-) k € {R} E[[E]]ls = v A" = Ak » v]
o, AAT, S, R [x] = FE S 0,A", AT, S, R, skip

C-MUTATE

e Cown Lookup: If x maps to a cown identifier £ in the variable store, such that A[xk — v]
and this cown identifier is owned by the current running routine, return the newly updated
state o[y — v]. If x does not map to a cown identifier, fault.

o(x) =k R() = (- {f},-) rwe{f} A =v o =0y~ 1]
0, A AT, 8, R,y = [x] = o, A, AT, S, R, skip

C-LooKup
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e Wait: If rs does not map to a set of routine names in the variable store, fault. Otherwise,
if rs maps to a set of routine names {7} and for each routine name, v in {7}, remove ¢ from
the set if the associated routine has finished execution and update the state accordingly.

o(rs) = {7} Ve e {}. v = p v v € dom(R) A R(x) = (-, -, skip)
o, AN T, S, R wait(rs) -, 0, A, AT, S, R, skip

WAIT

e Lookup and Set: For each x in {%}, if it doesn’t evaluate to a cown identifier x in o, fault.
For each x lookup routine name from the cown-routine mapping, i.e. A(k) = ¢’ and update
the cown-routine mapping A[x ~ ¢]. Combine the values of " into one set to obtain {z} and
return the updated state o[rs — {¢}]. Also update the cown groups I'[x — &]

o(%) = & I =Tt » {i}] A(R) = %y A = A[R » ] o' = o[rs » {Z:}]
o, A, AT, S, R, rs := LAS(%,7) - o', A, A, T, S, R, skip

e Take Cowns: Lookup the set of cowns {<} for the current routine in the cown group state,
if no group exists fault, otherwise, update the set of owned cowns in R for ¢ to contain {#}
if all the cowns are awvailable. A cown is said to be available if it is not owned by any other
routine. The availability predicate is defined as:

available(k) Ly, e dom(R). R(x) = (—,F) A Kk ¢ K
If the cowns aren’t available, the command will not fault.

r() = {i} )
Vi € {k}. available(k) R(z) = (0., {xk"},C,) R' = R[t » (0., {r'} u {§},C,)]

o,A, AT, S R, take — o, A, AT, S, R, skip

TAKE

e Give Cowns: For the current running routine, lose ownership of all the currently owned
cowns by updating the set of owned cowns in R.

R(x) = (0:,{f},C.) R = R[x » (0:,9,C.)]

. GIVE
o, A\, T,S R give — o,A,A,T,S, R, skip

e Spawn Routine: If a routine with routine name ¢ already exists in S or (R), fault. Other-
wise, if X evaluates to w, update S with an entry for v along with the appropriate state.

v ¢ dom(S) ¢ ¢ dom(R) o(2) =0 o, =[2~ 0] S" = 8[t » (0,,C)]
o,A, AT, S, R, start v with 2 {C} -, 0, A, A, T, 5, R, skip

e Run Routine: Any routine in S can start running at any given time. A routine ¢ is removed
from S and added to R with no owned cowns.

v € dom(S) S(x) = (0,,C.) R = R[t » (0,,¢,C.)] S =8\ {}

R-R
o, A AT, 8, R.C >, 0,A N, S, R, C o

e Progress Routine: Any routine in R can make progress at any given time. Take a small
step for ¢, after which R needs to be updated accordingly.

v € dom(R)
RG) = (0., {#},C.) o, AAT,S R, C - o, AN T S R C
R,(Z) = (_v{’i,}v—) R" = R,[Z ind (O':, {/{’},C;)]

R-PROGRESS
o,A,A,T,S,R,C -, o, A", A, T",S"R",C

5.5 Translating MiniBoC to GIL-+

MiniBoC can be translated to GIL+ through the help of a translation function ©.
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5.5.1 MiniBoC to GIL+ Translation Function (©)

O takes in a MiniBoC command, C,,;, a set of routine names, R, and a set of program variable,
V, that are copyable in MiniBoC. It outputs a GIL+ command, Cg..

O(Cpmp, R, V) = Cy+

R represents the set of GIL+ routine names that have been used in the translation and is used to
get fresh routine names. At the beginning of the translation, R = ¢.

V' represents the set of MiniBoC program variables that are copyable. At the beginning of the
translation, V' = ¢.

Translating the assignment, if, function call, skip and the cown creation command is trivial, as ©
just acts as the identity function, as shown below:

O(y = E,R,V)=y:=E
O(if F then {Ci} else {C2},R,V) = if F then {C;} else {Cs}
O(z = f(E),R,V) = z = f(E)
©(skip, R, V) = skip

O(x = cown(F), R,V) = x := cown(FE)

When translating the sequential composition command, the set of used program identifiers, R has
to be updated accordingly:

O(C1;C2, R, V) = ©(C1,R,V);0(Co, R U rn(O(Cy, R, V)),V U cpv(Cy))

The output of ©(when (ix = %) {C}, R, V) is shown in Listing 5.2 and a line-by-line breakdown is
given below.

1 when (ix = %) {

2 C

3 }

Listing 5.1: Output of ©(when (ix = ) {C}, R, V)

I rs = ({z},v); // rs is local and ¢ is fresh
2 start ¢ with (§,rs) { // y=V

3 wait (rs);

1 take;

5 ix = %;

6 0(C,ix, R u {¢},V);

7 give;
Listing 5.2: Output of ©(when (ix = %) {C}, R, V)

On Line 1, the LAS command creates a cown group {%} for a routine ¢ and, looks up the routine
names previously associated with the cowns in the group. These routine names are stored in a
variable rs'. Note that ¢ is a fresh identifier, i.e. it does not appear in R.

On Line 2, a routine with the routine name ¢ is started. The routine captures a set of variables
y and the variable rs. y represents all the program variables in the variable store that are copied
over into the body of the behaviour and § = V. The variable rs is used in the body of the routine
and hence is captured as well.

On Line 3, the wait command waits on the set of routine names that were looked up in Line 1.
This wait ensures that the GIL+ program respects the BoC happens before ordering.

1Using rs as a variable local adds an arbitrary constraint on the MiniBoC program being translated - rs can not
be used a variable in the original MiniBoC program. However, one can comply with this trivially by using alpha
substitution
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On Line 4, the take command takes ownership of cowns that were grouped together as a result
of the LAS command on Line 1. This ensures that all accesses to the contents of the cown in the
routine body are allowed and valid.

In Section 4.1.2, we saw that ix variables in MiniBoC are bound to cown identifiers and not the
variables containing the cown identifier. Line 5 preserves this property by creating a set of cowns,
ix, as aliases for the actual required cowns .

On Line 6, when translating the behaviour body C to in GIL+, it is necessary to account for the dif-
ferences in accessing the contents of a cown compared to MiniBoC. Hence, an auxiliary translation
function (6) is used that replaces the occurrences of ix with [ix] (c.f. Section 5.5.3).

On Line 7, the give command, gives away the ownership of the cowns owned by ¢ at that
point.

5.5.2 Preservation of BoC happens before ordering

This section informally shows how the GIL+ translation of a MiniBoC program preserves the
BoC happens before ordering via an example. Consider Listing 5.3 with 2 behaviours, and its
corresponding translation - Listing 5.4.

From the BoC happens before we know that b; < bs.

x := cown(0);

when(ix = x) { // b
ix = 1;

i

when(ix = x) { // b2
ix = 2;

}

Listing 5.3: MiniBoC Program with 2 behaviours

This ordering corresponds to [x] := 1 < [x] := 2 in Listing 5.4.

Given that there is no defined ordering between routines in GIL+, it is possible for either routine
to begin execution first. Assuming that routine z; initiates execution and completes before vo
begins, the ordering is trivially preserved. However, even if ¢; starts execution and 5 commences
before z; finishes, or if ¢5 starts before r; does, the ordering remains intact. In both cases, we can
establish that rsl := LAS(x,7;) < rs2 := LAS(x,%2). Consequently, we can infer that routine ¢;
will always be included in the set of routine names represented by rs2, denoted as v; € o(rs2).
Thus, the wait(rs2) command guarantees that the statement [x] := 2 will execute only after z;
has completed execution. This, in turn, trivially implies the ordering [x] := 1 < [x] := 2.

x := cown(E);
rs = =} a);
start v with (x, rs) {
wait (rs);
take;
ix = x;
[ix] := 1;
give;
}
rs = {x},v2);

start v with (x, rs) {
wait (rs);
take;
ix = x;
[ix] := 2;
give;

Listing 5.4: GIL+ Translation of Listing 5.3
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An intriguing characteristic of this MiniBoC to GIL+ translation is that the take command, which
has the potential to block, will never actually block due to the presence of the LAS and the wait
commands.

5.5.3 Auxiliary Translation Function (0)

In GIL+, due to the difference in accessing the contents of cowns compared to MiniBoC, an
auxiliary translation function called 6 is introduced. This function is used to translate the body of
a behaviour in order to handle the accesses to cown contents.

The 6 function takes four inputs: a command C that needs to be translated, a list of variables ix
for which, a set of used routine names, R and a set of copyable program variable names V. The
purpose of # is to replace all occurrences of the cown variables iz with [iz]. Upon taking these
inputs, the function returns a translated GIL+ command.

This cown variable substitution, however, is not as simple as an alpha-substitution as in GIL+,
[ix] is not a valid expression. To address this issue, a solution is to introduce a fresh variable to
store the contents of cown ix in a previous command, and then utilize this fresh variable in the
substitution.

Translating commands that do not have expressions, i.e. the skip and the sequential composition
commands, is analogous to the main translation function:

O(skip, ix, R, V) = skip

0(Cy;Ca,ix, R, V) = C1;0(Ca, ix, R U rn(C}),V U cpv(Cy))  where C} = 0(Cy,ix, R, V)
For the when command, the main translation function can be used because we know that the
contents of cown can not be accessed by a nested behaviour, as seen in Section 3.4.4.

O(wvhen (ix = %) {C}, ik, R,V) = O(when (ix = %) {C}, R, V)
Commands with expressions may refer to one of the variables ix as an expression. Hence, for

the translation of these commands, the contents of the cown ix are first stored in a set of fresh
variables, say f, and the all references to ix are replaced with f.

Notation. f = [ix]; is used to represent fi := [ix;];fo = [ix2];...;f, = [ix,]; where f =
[f1,...,fn] and ix = [ixy,..., X, ]
Notation. E[%/§] means substitute all occurrences of variables x1, ...x,, with y,, ..., y, respectively

in the expression.

The auxiliary translation function, 6, for the cown creation and the if command is defined as
follows:

Il
Hhi

6(if F then {Ci} else {Co},%,ix, R, V)
0(x := cown(E),%,ix, R, V) =

:= [ix]; if F[ix/f] then {0(Cy, ix, R,V )} else {#(Ca, ix, R, V)};
[ix];x := cown(E[ix/f]);

|
Fhi
i

While translating the assignment and function call command, we consider two cases - the first,
where the variable on the left-hand side in these commands is not in ix and the second, where the
variable on the left-hand side is in ix.

Consider the assighment command y := E. In the first case, i.e. y ¢ ix, we only need to define
the set of fresh variables, as we have been doing so far. However, in the second case, when y ¢ ix,
a cown mutation is required. The same logic is applied to the function call command.

The translation for the assignment and function call commands is given below:
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O(y := E,ix,R, V) = f = [ix];y = F[ix/f] where y ¢ ix
O(y := E,ix, R, V) = f = [ix]; [y] := E[ix/f] where y € ix
0(z = f(E),ix, R, V) = £ := [ix];z := f(E[ix/f]); where z ¢ ix
0(z = f(E),ix, R, V) = f = [ix];[z] == f(E[ix/f]); where z € ix

5.6 Evaluating GIL-+

In this section, we see how GIL+ achieves its aims that are laid out in Section 5.1

5.6.1 Analysis of MiniBoC

GIL+ facilitates the analysis of MiniBoC by breaking down BoC into smaller, fine-grained com-
mands that are easier to write pre- and post-conditions about. For e.g. when reasoning about
cowns in behaviours, one has to reason about them indirectly via the inner ix variables that are
bound to the contents of the cown. However, in GIL+, one can directly reason about the cowns
due to the [x] syntax.

5.6.2 Emulating other concurrency paradigms

In GIL+, it is also possible to emulate the concurrency paradigm of JavaScript’s Async-await,
which involves the usage of asynchronous functions and promises. Asynchronous functions can be
invoked from GIL+ routines, and the promises associated with these asynchronous operations can
be represented using cowns.

In JavaScript’s async-await paradigm, asynchronous functions allow non-blocking execution, en-
abling the program to perform tasks concurrently. When an asynchronous function is called, it
returns a promise, which represents the eventual completion or failure of the asynchronous op-
eration. This promise can be used to handle the result of the asynchronous operation once it
completes.

In GIL+, we can emulate this behaviour by associating promises with cowns. The cown can be
used to represent the state of the asynchronous operation, similar to how promises represent the
state in JavaScript. The GIL+ routine can interact with the cown, waiting for its completion or
performing other operations based on the promise’s state. The GIL+ wait command can also be
used to model the await command from the async await paradigm.

Consider a contrived JavaScript asynchronous function foo, shown in Listing 5.5. The function is
declared with the async keyword, indicating that it will return a promise [34].
1 async function foo() {

2 return 1;

3 }

4

5 foo().then((ret) => /* do domething with ret */) ; // 1
6 ret = await foo(); // 2

Listing 5.5: JavaScript Asynchronus Function

The code listing also demonstrates two different ways of calling this function:

1. In the first case, foo () is invoked, and the returned promise is chained with a then method to
handle the resolved value. This allows for executing some code when the promise is fulfilled.
In the example, the resolved value is captured in the ret parameter, which can then be used
to perform further actions.

2. In the second case of calling the JavaScript asynchronous function foo, the await keyword is
used to pause the execution of the surrounding async function until the promise returned by
foo is fulfilled. The resolved value of the promise is then assigned to the variable ret.
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When translating JavaScript asynchronous functions to GIL+, the functions are modified to return
a cown, which enables the sharing of data across routines. This modification allows for seamless
communication and data transfer between different parts of a GIL+ program.

The GIL+ translations of the function calls in Listing 5.5 is shown in Listing 5.6 and Listing 5.7.
Let’s examine each translation:

v // 1

2 start ¢ {

3 ret := foo();

4 /* do domething with ret x/
5 }

Listing 5.6: GIL+ Translation of foo function calls

The first translation is straightforward. The foo() function is called within a routine ¢, and the
returned value is assigned to the variable ret. The subsequent code can then operate on ret as
needed.

v // 2

2 ret = cown (0)

S ({ret}, )

4 start ¢ {

5 take;

6 [ret] := foo();

7 /* do domething with ret x/
8 give;

o }

10 wait (xr)

11 _ := {ret}, ) // wc
12 take;

13 ret := [ret]

Listing 5.7: GIL+ Translation of foo function calls (continued)

In the 2nd translation, the routine v, takes ownership of a ret cown and updates it with its contents
to store the return value of foo(). The wait(r), command ensures that the current routine waits
until the promise is resolved. The . = LAS({ret},t.) command adds ret to the cown group for
the current routine to allow subsequent access to the resolved value.

5.6.3 Exploring other BoC variants: FlexibleBoC

Upon identifying that the take command is non-blocking in the translation of a behaviour from
MiniBoC to GIL-+, we introduce FlexibleBoC. In FlexibleBoC, the MiniBoC when is translated to
GIL+ without the wait command, as shown in Listing 5.8.

1 _ o= ({z},2); // rs is no longer required

2 start ¢ with (%,§) {

3 // wait (rs);
4 take;

5 ix = X%;

6 0(C,ix, I u {r,rs});
7 give;

s }

Listing 5.8: Output of ©(when (ix = %) {C}, I) in FlexibleBoC

As a result, in FlexibleBoC, there is no happens before ordering for behaviours. However, beha-
viours fight to gain exclusive access of cowns. Consider the following MiniBoC program given in
Listing 5.9.

1 x1 := cown(0)

2 x2 := cown (0)

3 x3 := cown (0)

1

5 when(ix1l = x1, ix2 = x2) { ... } // b
6 when(ix2 = x2, ix3 = x3) { ... } // b
7 when(ix3 = x3, ix1 = x1) { ... } // b3

Listing 5.9: A MiniBoC program with 3 behaviours
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According to normal BoC rules, in Listing 5.9, the b1 < b2 < b3 happens before ordering exists.
However, in FlexibleBoC, no such ordering exists and there will be a fight over gaining exclusive
ownership of cowns and any behaviour can start executing first.

In FlexibleBoC, behaviours contend for ownership of cowns, leading to non-deterministic execution
sequences. This flexibility enables the modelling of scenarios where behaviours must compete for
resources or synchronize their actions without imposing a strict ordering.

For instance, in the dining philosophers problem, philosophers may contend for exclusive ownership
of forks (cowns) to perform their eating actions. The absence of a fixed happens-before ordering
in FlexibleBoC allows different philosophers to start eating or release their forks in any order,
mimicking the inherent concurrency and unpredictability of the problem.

FlexibleBoC, with its non-deterministic execution and absence of a fixed happens-before ordering,
can find utility in various real-life scenarios where concurrent and flexible behaviour is required,
such as:

e Ticket Booking System: In a ticket booking system, multiple users may concurrently attempt
to book tickets for the same event or seat. With FlexibleBoC, the system can model the
contention for ticket availability, allowing any user to start the booking process first. This
flexibility accurately represents real-world scenarios where users compete for limited resources
and enables the system to handle concurrent ticket bookings effectively.

e Concurrent File Access: In a file system, multiple processes or threads may need to access
and modify files concurrently. FlexibleBoC can be employed to model the concurrent access
and contention for file resources. With no fixed ordering, different processes can access and
modify files as per availability, allowing for efficient utilization of resources and avoiding
unnecessary delays

e Collaborative Document Editing: In collaborative document editing tools, multiple users
may simultaneously edit the same document. FlexibleBoC can model the concurrent editing
process, where different users contend for exclusive ownership of document sections. This
flexibility allows users to start editing their sections in any order, enabling real-time collab-
oration and efficient synchronization of document changes.

These examples highlight the versatility of FlexibleBoC in capturing the complexities of concur-
rent and flexible behaviour in real-life systems. By embracing non-deterministic execution and
relaxed ordering constraints, FlexibleBoC enables more accurate modelling and efficient handling
of concurrent scenarios. This versatility of FlexibleBoC in turn shows how GIL+ can be used to
identify other BoC variants or BoC adjacent concurrency paradigms.
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Chapter 6

Soundness

In this chapter, our goal is to establish the soundness of the MiniBoC to GIL+ translation. Sound-
ness means demonstrating that each step in the MiniBoC semantics corresponds to a corresponding
step in the GIL+ semantics, ensuring that the translated programs preserve the intended beha-
viour.

By establishing the soundness of the MiniBoC to GIL+ translation, we can confidently rely on the
GIL+ semantics to reason about the behaviour and properties of programs originally written in
MiniBoC. This soundness property enhances the trustworthiness and reliability of the translated
programs, enabling their effective use in practical applications.

6.1 Behaviour Name to Routine Name Bijective Function

(b2r)

. . .. . . def .
To aid with our soundness proof, we use a bijective function b2r == BName x RName that takes in
a behaviour name and returns a unique routine name, i.e. b2r(b) = ¢ where b is a behaviour name
and ¢ is the routine name returned.

6.2 Storing extra information in the MiniBoC Operational
Semantics

To aid with the soundness proof, we modify the running routine state in the MiniBoC operational
semantics as follows:

Running Behaviours State : R ‘<" BName — VarStore x BName* x [Cown — Var] x Cmd

The updated running behaviour state (R) consists of the local behaviour state, o3, the set of
behaviours that had to happen before this behaviour, the cown variable mapping representing the
variables bound to the contents of a cown, § (or [# +~ ix]), and the behaviour body, C.

This modification of R stores information about the BoC happens-before ordering for the running
routines as well. This modification mainly affects the run routine rule. The updated run routine
rule is described as follows, with the updated part highlighted in red:

b € dom(S)
S(b) = (ov, {b},[F ~ ix],C;) S = S~ {by Vb b. R(b) = (-, -, skip)
A(R) =5 R = R[b~ (0p[ix = 7], {b}, [F ~ iX],Cp)]

B-Run
o, AS,R,C >, 0,A,S" R, C

This modification is truly trivial, as this additional piece of state is not used by any of the other
rules and is never mutated again. Its sole purpose is to facilitate the soundness proof without
impacting the behaviour or functionality of the MiniBoC operational semantic rules.
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Other rules that rely on state information from R are trivially updated to ignore this extra state
information, i.e. if R(b) = (op,d,Cp) in the unaltered operational semantics, it is treated as
R(b) = (Jb7 ] 6b7 Cb)

6.3 MiniBoC Well-Formed Configuration

The well-formedness conditions for a MiniBoC configuration are as follows:

e A behaviour can not be in the running state and spawned state at the same time - dom(R) n
dom(S) = ¢

e All the cowns acquired by the running behaviours are disjoint from each other, ie. -
Vb € dom(R). (R(b) = (-,—,[F = -],-) = Vb € dom(R) \ {b}.R(}') = (-,—, [k +~
L) AEnE =¢

Note that these well-formedness conditions aren’t exhaustive, only the conditions relevant to the
proof are listed.

6.4 State Translation

The translation of the BoC state (b, Ymp) F Ombs Ambs Smbs Rmbs Cmb, where b is the current beha-
viour and 7, is the function context, gives us (¢, v4+) + g+, Ags, Ags, Tgry Sgu, Ry, Cge Where
¢ is the current routine and 4, is the function context.

® 0, = Opp if Cpyp is not the when command. If C,,, = when (ix = %) {C} is the when
command, then oy, = opp[rs = {£}] where o,np(%) = &, App(R) = (=, b) and b2r(b) = ¥

o Ay = [ = 3)if App = [B = (3,-)].

o Ay = [Fw b2r(D)]if Ay = [F = (=, D)].

o Iy: = [b2r@s) - dom(dg), b2r(bg) ~ dom(dg)] if Sy = [bs = (-, —,0g,—)] and Ry =
[bl? ng (_75R7_):|

o Sgi. Vb € dom(Smp). Smp(b) = (Ub,{g},[/% + ix],Cp), we can add an entry to S,. as
follows:

Sys (02r(b)) = (op[rs = {b2r(b)}], wait(rs); take; ix = %;0(Cy, ix, R, V); give; )
where 04(%) = &, R = b2r(dom(Rmp)) U b2r(dom(Smp)) and V' = dom(omp)

e Ryi. Vb e dom(Ryp). Rup(b) = (03, {b},[% ~ ix],Cp), we can add an entry to Sy, as
follows:

Ryi(b2r(D)) = (op[rs = {b2r(b)}][ix + R], &, 0(Cp, ix, R, V); give;)
where R = b2r(dom(Rp)) U b2r(dom(Smp)) and V' = dom(o )
e v = b2r(b)

® 7g: is just 7y, but with all the commands and the expressions of the functions translated
GIL+ commands and expressions using the © translation function.

When relying upon this translation in a proof, this translation is referred to as MGT (MiniBoC to
GIL+ Translation).

6.5 Proof Statement

For some well-formed MiniBoC configuration o5, Aymb, Smbs Rimb, Cmp and some well-formed GIL+
configuration, o4+, Agy, Ags, I'gs, Sgu, Rgs, Cyr we have to prove the following:

b / / ! / /
Omb, Ambv Smba Rmba Cmb vy Omps Am,ba mbr Llmb> cmb

E o

oy 1 l l / / I
Ug+7Ag+aAg+aFg+aSg+7Rg+an+ _>fy O—g+7Ag+’Ag+7Fg+’Sg+vRg+7cg+

43



where:
o translating oy, Amb, Smbs Rimb, Cmp gives us Og+; Ag+7 Ag+7 I-_‘ng Sg+7 Rg+7 Cg+
Al AT SR, Ch

g+t) gt T gt Tgty gy

o translating o] ,, Al . S Rl ..
o b2r(b) = v.

e C,p;O(C, R, V) where R = dom(Sg+) U dom(Ry+) and V' = dom(omp)

! 4 4
Conp glVes us oy,

6.6 Proof

Soundness of this translation is proved via case analysis on the MiniBoC operational semantic
rules. In each case, we assume the antecedent of our proof statement and prove the consequent of
the proof statement. !

In the context of our soundness proof, it is important to note that the assignment, sequential com-
position, if condition, function call, cown creation, and progress behaviour rules in MiniBoC have
corresponding rules in GIL+. As a result, establishing the soundness of these cases is relatively
straightforward. In this section, we will provide a proof for the assignment and sequential compos-
ition cases, while noting that the remaining cases follow similar reasoning The Spawn Behaviour
and the Run Behaviour are non-trivial, as they rely heavily on the MiniBoC to GIL+ translation
being correct semantically.

Regarding the Finish Behaviour rule, it can be considered a special case of the progress behaviour
rule, as it represents the completion of a behaviour. The additional consequences of the Finish
Behaviour rule follow from the translation of states and the auxiliary translation function. By
ensuring that the translated GIL+ commands and states accurately reflect the MiniBoC behaviour,
the proof for the Finish Behaviour rule can be derived from the progress behaviour rule.

6.6.1 Assignment

We assume the antecedent for this case, i.e. a successful execution of the MiniBoC assignment rule
for the current behaviour b.

ElENom, = v Oy = omoly = v]

Tmbs A Sty Boniyn ¥ = E ) 0% Ay, Sntys Ry, SKiip (6.1)

Proof

(1) omp = [2 = @] Premise

(2) ogs = [2 ~ W][rs » -] (MGT, 1)

(3)  Omb = 0gs (1, 2)

4) EllEls,., =v from Equation 6.1

(5)  EllEs,. =v (3, 4)

(6) o = omely = 0] from Equation 6.1

(1) op = [2 = @][rs » ~][y = v] (1, 6)

(8) og = [2 » w][rs » ~][y = v] (MGT, 7)

(9) o4 = ogely = 0] (2,7)

Using (5) and (9) we can prove the consequent:

Ogtr Bgas Ngi, Dgy Sgus R, 7 = E = 0y, Agi, Ngi, Ty, Sgiy Ry, skip

’
g+’

n the logical statement A =—= B, A and B are typically referred to as the “antecedent” and the “consequent”
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Hence, proving soundness for this case.

6.6.2

Spawn Behaviour

We assume the antecedent for this case, i.e. a successful execution of the MiniBoC spawn behaviour
rule for the current behaviour b, as.

fresh. b App(R) = (T, br)

Umb(f{) =K

:nb = Amb[’% = (T)mbC)] ;nb = Smb[b e (Umba {B,{}, [R = iB(],C)]
O'mvamba Smb,Rmb,when (iﬁx = f() {C} ELY Umva;nba S;nbaRmba Skip (62)

We know that when C,,;, = when (ix = %) {C}, then:

Cy+ = O(when (ix = %) {C}, R, V) = rs := LAS(%,7); start r with j,rs {C'}

where C’ = wait(rs);take,ix = %;0(C, R U {¢});give;, V = dom (o) and R = b2r(dom(S)) U
b2r(dom(R)). Because of the way the translation function © is defined, we can say that § =
dom(omp).

Proof: b = main

(1)
(2)
(3)
(4)
(5)
(6)
(7)

b2r(be) = z.
b2r(b) =«
(2 — @]
_[S'_’(__(SS, )]
Ry = [br = (== 0r, )]
= [Ra = (0a,ba)]

¥ = dom(omp)

o (Z) = R
Amp(R) = (B, b)

0gr = [2 = W][rs = {bs}]
Omb € Ogs

omp(X) = R

0g+(%) = R

Ty, = [02r(bs) = dom(ds),b2r(br) ~ dom(dr)]

S:nb = Smb[b g (Umb7 {En}v ["% ind iﬂx]7c)]
R = B
Iy, = [b2r(bs) =~ dom(ds),b2r(bg) = dom(ér)][b2r(b) ~ R]

Ag+ = [I‘%A = bQT(EA)]

K S RA
Bn c BA
Agi(R) = b2r(by)

Al = App[R = (T, be)]
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Premise
Premise
Premise
Premise
Premise
Premise

Premise

from Equation 6.2
from Equation 6.2
(MGT, 3,9, 10)
(3, 10)

from Equation 6.2
(11, 12)

(MGT, 4, 5)
from Equation 6.2
from Equation 6.2

(MGT, 15, 14)

from Equation 6.2



(23) AL, = [Fa = b2r(ba)][R ~ b2r(b.)] (MGT, 22)

(24) AL, = Agi[R = b2r(b,)] (18, 23)
(25) AL, = Ags[R ~ 2] (1, 22)
(26) o), = Omb from Equation 6.2
(27) oy = 044 (26)
(28) o, = [z~ w][rs — {b.}] (10, 26)
(29) oy, = [2 > ®][rs = {B}][rs = {ba}] (28)
(30) o), = ogilrs » {be}] (10, 29)
(31) ol = oy (10, 28)
(32) fresh.b from Equation 6.2
(33) b ¢ dom(Smp) (32)
(34) b ¢ dom(Rpmp) (32)
(35) ¢ ¢ dom(Sg+) (2, 32, 33)
(36) « ¢ dom(Rgy) (2, 32, 34)
CONEEE 2.0
(38) 044 (¥,18) = W, {by} (10, 37)
(39) Sy, = Sgilr = (op[rs = {b2r(b: 1)1, ¢)] (MGT, 2, 8, 15)
where C’ = wait(rs);take, ix = %;0(C, R, V); give;
and R = dom(Ry:) U dom(Sg+),V = dom(omp)
(40) 0gs = omp[rs {En}] (3, 10)
(41) Sy, = Sgilr = (044,C")] (39, 30)
where C’ = wait(rs);take, ix = %;0(C, R, V); give;
and R = dom(Rg.) U dom(Sg+),V = dom(oms)
This allows us to prove the consequent of the proof statement as follows:
Ogrs Dgey Age, Tgs, Sgv, Rgy,Ts = LAS(%,¢); start ¢ with §,rs {C'}
z—> Oges Dges Mgy, Ty, Sgvs Ryy, skip; start ¢ with §,rs {C'}
(Using SEQ-COMP-LEFT and (13, 17, 21, 25, 30))
e, g+, Ags, A;+, g+s Sg+, Ry, start ¢ with §, rs {c’} (Using SEQ-COMP-SKIP)
. TI. Ay, T, Sgi, Ryy, start ¢ with §,rs {C} (Using (31))
o Ogis Dge, Mgy, Tgiy Sgis Ryy, skip (Using R-SPAWN and (35, 36, 38, 41))

Hence, proving soundness for this case.
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6.6.3

Run Behaviour

We assume the antecedent for this case, i.e. a successful execution of the MiniBoC Run Behaviour
rule in the current behaviour b,.

b e dom(Smp)

Smp(b) = (ov, {b}, [F = ix], Cp)

! Smp N {b} Vbeb (b=pV Rup(b) = (-, -, skip))

NGRSO TR UNGIS IX:5) B,
Tmbs Dby Smbs Rmby Cmb —> Tmby D, mb> Cmb (6.3)
Proof
(1)  b2r(b.) = . Premise
(2) b2r(b) =« Premise
(3) omp = [2 » W] Premise
(4) onw(%) =k Premise
(5)  Amp = [Fa » (Da,0a)] Premise
(6) be dom(Smp) from Equation 6.3
(7)  b2r(b) € b2r(dom(Spms)) (6)
(8) dom(Sgs) = b2r(Sms) MGT
(9) © e dom(Sy4) (2,7,8)
(10)  Spp(b) = (o3, {b}, [7 ~ iX],Cp) from Equation 6.3
(11)  Sge(b2r(b)) = (ov[rs = {b2r(B)}], C.) (MGT, 4, 10)

where C, = wait(rs);take, ix = %;6(Cp, R, V); give;
and R = dom(Ry.) U dom(Sg+), V' = dom(omp)

(12)  S44(2) = (0:,C) ) (2, 11)
where 0, = op[rs — {b2r(b)}]

(13) S, = Sms N {b} from Equation 6.3
(14)  Spy = Sgs ~ {b2r(b)} MGT, 13
(15) S, = Sgu ~ {2} 2, 14
(16) Ry, = Ryilt = (0:,6,C.)] Premise
(17) v e Ry, (16)
(18) Rg.(2) = (0, 9,C.) (16)
(19) o.(xs) = {p2r(b)} (12)
(20) Vb eb. (b=p Vv Ru(b) = (-, -, skip)) from Equation 6.3
(21) Vi' € b2r(b). ' = p v Ryp(z) = (-, -, —, skip) (MGT, 20)
2
(22) 0v, Agy, Agr, Ty, Sl R, Co >y Using WAIT and (19, 21)

" /
Uz7Ag+aAg+7Fg+7Sg+,R C

g+t

where C! = take; ix = %;6(Cy, R, V); give;

2(21) should be skip; give according to the translation, however, it can trivially be reduced to skip using the
SEQ-COMP-SKIP and GIVE rules to reach (21)
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(23)

(24)

(25)
(26)
(27)
(28)
(29)
(30)

(31)

(32)

(33)

(34)

(35)
(36)

(37)

Ty, (b2r(b)) = &

027Ag+7Ag+aFg+aSg+7R,gl+[z ng (Gzad)? C;)LC; i)’\/
02y Dgas Ngs, Dy, Sgus RYL[v = (00, {R}, C))]. C
where C! = ix = %;0(Cy, R, V); give;

Ry = Ry.[v = (0v, {R}, C])]
v € dom(Rgfr)
Ry (¢) = (o, {&},C]

Elx o = R

Omb S Og+

El[2]]o,, = &

moqrr®
027Ag+7Ag+arg+7Sg+7Rg+7Cz v
- - " coiva
o.[ix = K], Age, Age, Ty, Sgv, Ry, 0(Co, R,V ); give;

! Rop[b = (op[ix = 9], {B}, [% = ix],Cy)]

mb

R}, = Ry.[b2r(b) = (op[ix » ¥][rs {b2r(b)}][ix ~
RL {R}v g(cba Rv V)’ give; )]

R), = Ryt =~ (op[ix ~ 0][rs ~ {b2r(b)}][ix -
’%]7 {’%}’ G(be R, V)? give; )]

Ry, = Rgi[r = (ou[ix = &], {k},0(Cp, R, V); give; )]

R} [x = (0.[ix » F]

: },0(Co, R, V); give; )] =
Ry [t = (o.[ix = K], {R},0(Cy, R,V ); give;)]

Ry, = R\ [t = (0.[ix = E], {K},0(Cy, R,V ); give;)]

7{’%
7{’%

(MGT, 10)

Using TAKE and (23)

Premise
(25)
(25)

(4)
(MGT)
(28, 29)

Using Assgn and (30)

from Equation 6.3

(MGT, 32)

(2, 33)

(12, 34)
(16, 25)

(34, 36)

This allows us to prove the consequent of the proof statement as follows:

Ze]

tc

tc

tc

2]

tc

!
—~0g+, Ag+7 Ag+7 Fg+7 S

_)”/Ug‘*')Ag+aAg+aFg+aS;+7ng,+[z ind (Uza(éaci)]acg#-

’ 1
——y0g+, Ag+7 Ag+7 Fg+7 Sges R

!
7y 0g+; Ag+a Ag+a Ly, S

Jg+; Angv Ag+7 Fg+7 Sg+7 Rnga Cg+
"
Rg+7 C9+

g+

4 " -, I
—>»./O'g+, Ag+a Ag+7 1_\g+a Sg+7 Rg+[z ind (UZ’ {H}’ Cz )]7 C9+
’ 1
——yO0g+, Ag+7 Ag+7 Ly, Sg-H Rg+a Cy+

[ = (00, {&},0(Co, R, V); give; )], Cge

g+ g+

(Using R-Run and (9, 12, 15, 16
(Using R-Progress and (17, 18, 22
(Using R-Progress and (24

(Using (25

)
)
)
)

(Using R-Progress and (25, 26, 31))
(Using (37))

/
Rg+7 C9+

g+’

Hence, proving soundness for this case

6.6.4

Sequential Composition Left

We assume the antecedent for this case, i.e. a successful execution of the MiniBoC Sequential
Composition Left rule in the current behaviour b.

3the TAKE rule in (24) requires an extra condition, available(#) which comes from the well-formedness condition
of MiniBoC semantics
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b / / /
Omb, Amb7 Smbs Bmps Cmpt v Ombs Amba mb>s R, Conprr

b ! ! A
Timbs Dby Smby Rinbs Cob1; Conbz =~ s D Sty Bmbs Crprs Cinb2

We use induction to prove this case, and our inductive hypothesis is given below:

b 4 ! ! !
Omb, A?nba Smb7 Rmba Cmbl >~y Ombs Amba Smb7 R’mbv Cmbl

SEQ-CoMP-LEFT

p—y
‘ / ! /
Og+, Bgis Ngs, Ugis Sgiy Ry, Coin Y Ug+a Ag+’ g1 9ges Rge, Cgin (IH)
where b2r(b) = ¢
Proof
b .
(1) ome, Amb, Smbs Rmb, Cobl — from Section 6.6.4
’
O mbs mbv Smba Rmb7 mbl’
v *
(2) Ug+7 Ag-H Ag+; Fg+7 Sg+7 Rg+7 g+1 _)»y (IH)
4 4
g+7 Ag+7 g+ Sng’ g+ g+1
" " " " 1" "
We know that for some oy, , A7, T/, A7, T7, S, Ryy, C,y such that
(3) O'g+7 Ag-*—» Ag+; Ty., Sg+7 Ry, Cgi1 _>y
" " " " 4 "
q+7 A(]+7 Fq+7 Aq+7 Fq+7 Sq+’ g+ Cg+1
" " " " " " ¢ *
(4) g+7Ag+7Fg+7Ag+7Fg+7Sg+7 9+7Cg+1 y
I I
g+7 Ag+7 g+ g+’ g+ Cg+1
k4 .
(5)  oge, Agi, Agi, Tgi, Sgu, Rge, Cgi1; Caua = Using SEQ-COMP-LEFT and (3)
" " " " i " .
g+7Ag+7Fg+7Ag+7Pg+7Sg+a g+7cg+1acg+2

Repeating steps shown in (3), (4), (5) for the entirety of i>,y, we can show that:

4 4 4
Ug+7Ag+7Ag+7Fg+7Sg+ng+u g+1acg+2 _) U Ag+7 g+7Ag+7 g+7S

v Yg+

Hence, proving soundness for this case.

49

/ .
g+ Rg+7 Cg+17 Cg+2



Chapter 7

Evaluation

This chapter merely summarises the evaluation work done in the previous chapters:

e In Section 4.4, we evaluate MiniBoC and list further improvements for MiniBoC. We also
suggest extending the existing BoC paradigm with cowns that not only protect data but
protect specific operations on data such as read and write.

e In Section 5.6, we evaluate how well GIL+ achieves its objectives. The choices made in GIL+
have also been justified when formally introducing the syntax of GIL+.
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Chapter 8

Conclusion

The primary objective of this thesis was to introduce GIL+ as a target language for BoC programs
to enable reasoning about their correctness through various program analysis techniques such as
machine-aided software verification. However, during the design process, we expanded the scope of
GIL+ to achieve additional aims. These aims were outlined in Section 5.1, and they encompassed
not only supporting the translation of BoC programs, but also providing a framework for reasoning
about other concurrency paradigms. For instance, we demonstrated how GIL-+ can be used to
reason about JavaScript’s async-await paradigm in Section 5.6.2.

Furthermore, we extended the BoC concurrency paradigm by presenting a small-step operational
semantics for a language that incorporates BoC concepts. This extension allows us to explore and
analyse the behaviour of programs that leverage the unique features offered by BoC. Additionally,
we introduced a variant of BoC called FlexibleBoC, which may be better suited for programs that
model resource contention.

By achieving these objectives and expanding the capabilities of GIL+, this thesis contributes
to the field of concurrency analysis and provides a solid foundation for reasoning about BoC
programs.

8.1 Future Work

This project opens up several intriguing avenues for future exploration and research, some of which
have been discussed further below.

8.1.1 Read-Write Cowns

Cowns are quintessential in BoC and in their current form they protect data. More precisely, they
protect 2 operations from occurring on data - reads and writes. However, an intriguing concept
is the introduction of read-write cowns, which specifically prevent write operations on data while
allowing other operations, such as reads, to proceed. This introduces a more fine-grained level of
control and flexibility in the usage of cowns.

By introducing read-write cowns, developers can have more control over the concurrency of their
programs. This allows for scenarios where multiple concurrent read operations can be performed on
shared data while still ensuring exclusive access for write operations. This finer-grained protection
can lead to improved performance and concurrency in certain situations.

8.1.2 Program Analysis

With the establishment of GIL-+ as a target language for MiniBoC programs, a range of program
analysis techniques can be introduced to reason about the correctness and properties of these
programs. Symbolic execution, a powerful analysis method, can be applied to explore different
program paths and generate test cases. Additionally, full verification techniques can be employed
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to formally prove the correctness of MiniBoC programs, ensuring that they adhere to the desired
specifications and properties.

By leveraging GIL+ as the foundation for program analysis, developers and researchers can gain
deeper insights into the behaviour and characteristics of MiniBoC programs, leading to improved
code quality, reliability, and overall understanding of Behaviour oriented Concurrency.

8.2 Ethical Considerations

Gillian’s nature is to verify a program’s correctness, a natural consequence of Gillian is the discovery
of bugs in applications. Gillian has been effective in finding bugs in production-grade software.
Gillian led to the discovery of 5 bugs in total [9], two of which were security vulnerabilities in C
and JavaScript. Since, Gillian is open-source and available to the public [35]. This proves that
Gillian and machine-aided software verification is an effective bug-finding technique.

Thus, It is possible that a bad actor can implement GIL+ and use it to find zero-day bugs in
software using BoC. However, to successfully misuse GIL+, this bad actor will need to:

e Have a deep understanding of Gillian and GIL+

e Have a deep understanding of BoC

e Have an understanding of the OSS they are trying to exploit
e Find bugs that raise security concerns

Even though the odds of a malicious actor possessing the knowledge to successfully exploit bugs
are infinitesimal, a simple counter-measure is to use Gillian to detect and resolve these bugs
beforehand.
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Appendix A

“New” BoC Operational Semantics

This appendix contains an excerpt from the original Behaviour-Oriented Concurrency paper that
has been submitted for OOPSLA’23.

Definition A.1 (Simple underlying programming language). A tuple (Context, Heap, —, finished)
is an underlying programming language if all of the points that follow hold. We use the identifiers
E,E’,... to range over elements of Context, and h,h’... for Heap.

(1) The execution relation — has signature — < (Context x Heap) — (Context x Heap).
(2) The set finished < Context describes terminal contexts.

In Definition A.2 we show how we can extend any underlying language to obtain a BoC language.
The extension enriches the underlying language so that programmers can create cowns and spawn
new behaviours; also, the extension introduces concurrency to the language by enabling running
multiple behaviours at a time.

Definition A.2 (BoC extensions). We define the Behaviour-Oriented Concurrency (BoC) exten-
sion for an underlying language, (Context,, Heap,,, =, finished,,), and obtain a BoC tuple ( Context,
Heap, =, finished, ~, Tag):

(1) We require the execution relation to be extended to accommodate “>unen () {£} Where <ueq %) (£} S
Context — Context

(2) Configurations are tuples, Conf = PendingBehaviours x RunningBehaviours where

P ¢ PendingBehaviours = (Tag* x Context)”
R ¢ RunningBehaviours = P(Tag* x Context)

(3) The execution relation ~ ¢ (Conf x Heap) — (Conf x Heap) is defined in Figure A.1.

[STEP] [SPAWN]
E,h—>E' K E en ) (5my E
Rw (% E),P,h ~ Ruw(R E),P,i'  Rw(k E),P,h ~ Ru(r E),P:(x,E"),h

[RUN] [END]
(U(?,i)e(P’UR) K)NE =2 finished(E)
R P :(R E):P'h ~ Rw(RE),P:P'.h  Rw(iE),P,h ~ R Ph

Figure A.1: Semantics for BoC

We will now discuss each of the rules in Figure B.2.

STEP describes a step where a running behaviour is able to make a step in the underlying language;
this updates the global heap and the local context of the behaviour.
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SPAWN describes spawning of a new behaviour. The underlying relation updates the spawning
behaviour’s context to accommodate the local effects of spawning a behaviour (such as updat-
ing stacks to reflect captured values and reducing expressions). The cowns required by the new
behaviour (%) and its context (E") are added to the end of the pending behaviours list.

RUN describes running a behaviour. A behaviour can be run once two criteria are met: (1) no beha-
viour that appears earlier in list of pending behaviours has overlapping cowns with this behaviours
cowns; (2) the cowns required by the behaviour are not in use by any running behaviour.

END describes terminating a behaviour. This step requires that some running behaviour has
reached some terminal state, it can then be removed from the running behaviours.

Ensuring happens-before:

SPAWN demonstrates the linear structure of P, spawned behaviours are always appended to the
end of the list of pending behaviours. In RUN a behaviour can only be made running and removed
from P if there is no prior behaviour in P that requires the same cowns. This means that whenever
two behaviours overlap, the earlier spawned behaviour will always be run first.

These semantics provide a means to schedule behaviours such that no running behaviours are
granted access to the same cowns at once. This is not in itself enough to isolate behaviours: we
also need the contents of these cowns and the states of the behaviours to not overlap. Thus, we
require the underlying language to provide a mechanism for memory isolation. These semantics
permit, and in fact we strongly recommend, such a mechanism to ensure behaviour isolation.

Assume the underlying language has a mechanism for isolation, such as a type system. Consider
what it means for a step to be allowed in the underlying language in STEP. One definition of this
requires that a step must preserve the state of all memory from which this behaviour is isolated [?].
Thus, a behaviour can mutate its cowns and local state, as long as it does not affect other isolated
memory.

In more detail, for SPAWN we expect that the type system ensures that any shared data accessed
within the new context (E”) is protected (uniquely owned) by the required cowns (%). For END, we
expect that the type system ensures that the data protected (owned by) the cowns being released
(R) are disjoint.

Assuming this provisioned isolation, we can claim that behaviours are atomic operations. A be-
haviour will acquire its cowns, execute with access to isolated access to its cowns until completion
and then release the cowns. There is no way one behaviour can observe another partially executed
behaviour.

Ensuring deadlock freedom

BoC is deadlock-free by construction, as the semantics in Figure A.1 can always reduce unless all
the behaviours have finished. To show this, we assume the underlying semantics cannot get stuck,
that is:

VE.[ (YA.3E,W. B,h>E' 1) v (3B K E". E gy ) gy B) Vv finished(E) ] (A.1)

This may seem like too strong an assumption, as we expect that given a context and heap pair
progress can always be made, yet this can be satisfied fairly simply by permitting error contexts
that satisfy the finished predicate. In the presence of a heap in which a context cannot reduce, say
some dangling pointer, this will step to an error which will then be finished. We can also satisfy
this by defining well-formed configurations and proving preservation of such over the execution
relation, but this is more involved than we require here.

We proceed by case analysis on R being empty. If it is not empty, then we can apply the assumption
(A.1) to an element of R, which gives three cases, one for each disjunct. The three cases can
reduce by STEP, SPAWN or END respectively. If R is empty and P is non-empty, then the first
element of P can be moved to the running set using RUN. If R and P are both empty, then no
rules apply and the program has terminated. Hence, the BoC semantics cannot get stuck before
termination.
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Appendix B

“Old” BoC Operational Semantics

This appendix consists of a draft of the old operational semantics.

B.1 Extending a language with BoC

Definition B.1 (Simple underlying programming language). A tuple (Ezpr, Val, Var, Context,
Tag, error, =) is an underlying programming language if all of the points that follow hold. We
use the identifiers e, €’,... range over elements of Expr, v,v’,... for Val, z,2',y,y',... for Var,
E for Context, o,0’,... for Stack, and s, ', ... for Tag.

(1) Ezpr and Context are inductively defined sets where Val ¢ Fzpr and Var ¢ FEzpr and
Tag U {unit} ¢ Val. Each context, E, has a single hole (written e) that can be replaced
with some e (written E[e]) to create an element of Ezpr.

(2) The execution relation < has signature — ¢ (Ezpr x Stack) — ((Ezpr x Stack) w error)
where Stack = (Var — Val). We require that the following property must hold:

(a) If ey, 01 = e9, 02 then visible(es, 09) C wvisible(ey, o1) where visible as defined in Defini-
tion B.2.

Definition B.2 (Visible). The function wisible with the signature wvisible : (Ezpr x Stack) —
P(Tag) finds the elements of Tag visible from an underlying program configuration.

(1) wisible(k, @) = {x}

(2) wisible(v, @) = @ where v ¢ Tag

(3) wisible(e,0) = Uperng(o) visible(v, @) u visible(e, @)

(4) wvisible(E[e], o) = wvisible(E[unit], o) U visible(e, o)
In Definition B.6 we show how we can extend any underlying language to obtain a BoC language.
The extension enriches the underlying language so that programmers can create cowns and spawn
new behaviours; also, the extension introduces concurrency to the language by enabling the dispatch
and running of multiple behaviours at a time.

Definition B.3 (BoC extensions). We define the Behaviour-Oriented Concurrency (BoC) exten-
sion for an underlying language, (Ezpr,,, Val,, Contezt,, Tag,, error,, =), and obtain an BoC
tuple (Ezpr, Val, Context, Tag, error, =, ~, ErrorConf):

(1) Val = Val,
(2) Ezpr extends the inductive definition of Fxpr, with the two expressions:

e € FEzpr == ...asin Expr, ... | cowne | when (T =¢) [y = €] {e}
We require T = ¢, the sequence of required cowns in when (T =€) [y = €] {e} to be non-
empty.
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(3) Context extends the inductive definition of Context, so that:

E € Context == ...as in Context,, ...
| cown e
| when (T =R,z =T =¢) |y =c¢]{e}

| when (T="F) [y =0,y = ¥ = €] {e}

(4) wisible is extended for Expr as follows:

visible(e’, o) if e = cown €
visible(e, o) = { visible(e1, ) U visible(ez, o) U visible(es, @) if e = when (T = €1) |7 = 2] {e3}
as in Definition B.2

(5) Behaviourld is an enumerable set used for behaviour identifiers, ranged over by 3, ', ...
(6) Behaviours are tuples, Behaviour = (P(Var x Tag) x Expr x Stack)

Configurations are tuples, Conf = AwailableCowns x PendingBehaviours x RunningBehaviours
where

—
-
2

A € AvailableCowns = Tag - Val
P e PendingBehaviours = Behaviourld — Behaviour

R € RunningBehaviours = Behaviourld — Behaviour

(8) ErrorConf represents configurations where some static or dynamic error occurs.
(9) The execution relation ~ ¢ Conf — (Conf w ErrorConf) is defined in Figure B.2

[OS-STEP] [OS-CREATE]
R(ﬁ) = ((.’E, KJ),@,J) R(B) = ((1‘7 "i)vEl:Cown v],o)
e,oc>¢e o k ¢ AllCownlds(A, P, R)

A, P,R~A P R[p v~ ((z,5),€,0)] AP R~Alrk~v],P,R[ ~ ((z,r),E[x],0)]

[OS-SPAWN]

R(B) = ((x,k),E[when (27 = #) [7=7] {e}],0)
Vigjel..on(itj — &) #r))
B’ ¢ AllBehavIds(A, P, R)

A, PR~ A, P[B" = ((«/,5),e,(y = v))], R[S = ((,K),E[unit], 0)]

[OS-DISPATCH]

P(B) = ((z,K),e,0) [OS-END]
o' = olar > A(m). w0 > Akn)] R(B) = ((z.%).v.0)

A, P,R~ANE PN B R[B» ((z,k),6,0)] A P,R~A[k1 = o(21),...,kn = o(zn)], R\ B

Figure B.1: BoC Semantics

We will now discuss each of the rules in Figure B.2.

OS-STEP describes a step where a running behaviour is able to make a step in the underlying
language; this updates the expression and stack pair in the behaviour.

OS-CREATE describes the creation of a new cown. A new cown is created with a value, provided
by the behaviour, and added to the set of available cowns. Other behaviours will be able to request
access to this cown in the future through the new cown identifier that was provided.
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OS-SPAWN describes spawning of a new behaviour. The behaviour requests access to a number
of cowns &, provides captured variables that will construct the behaviour’s starting stack and an
expression that will be executed T. This new behaviour is added to the set of pending behaviours
and will wait until its cowns are available. There is no value outcome of creating this behaviour,
and so the creating behaviour is provided with unit.

OS-DISPATCH describes dispatching a behaviour. Once the cowns requires by some behaviour are
available, the behaviour has the potential to start running. Dispatching the behaviour makes all
the required cowns unavailable to other behaviours; furthermore, the initial stack of the behaviour
is enriched to provided access to the contents of the required cowns and the behaviour is set to
running.

OS-END describes terminating a behaviour. This step requires that some running behaviour has
reached some terminal value. The behaviour’s acquired cowns are made available again; but, now,
their contents reflect the value that can be found in the behaviour’s stack.

In Definition B.9 we define what it means for a configuration to be well-formed. This requires the
shorthands from Definition B.4.

Definition B.4 (Auxiliary Functions). We define the auxiliary functions

Veowns : Behaviour — P(Tag) AvailableCownlds : Conf — P(Tag)
PendingBehavlds : Conf — P(Behaviourld) RunningBehavlds : Conf — P(Behaviourld)
AllCownlds : Conf — P(Tag) AllBehavlds : Conf — P(Behaviourld)
as follows:
((_,R), _» Mecowns = K AvailableCownlds(A, P, R) = dom(A)
PendingBehavlds(A, P, R) = dom(P) RunningBehavlds(A, P, R) = dom(R)

AllBehavIds(A, P, R) = dom(P) u dom(R)

AllCownlds(A, P,R) = U (R(B)lcowns) U dom(A)
Bedom(R)

Definition B.5 (Well-Formed Configuration). A configuriaton is well-formed, WF ¢ (AwvailableCowns x
PendingBehaviours x RunningBehaviours), W F(A, P, R)iff all of the following hold:
(1) PendingBehavlds(A, P, R) n RunningBehavlds(A,P,R) = @
(2) If 8y # By and {1, B2} © RunningBehavlds(A, P, R) then R(51)4cowns N R(B2)cowns = D
(3) If B € RunningBehavlds(A, P, R) then R(8)lcowns N AvailableCownlds(A, P,R) = @
(4) If 8 € PendingBehavlds(A, P, R) and £ € P(8)cowns:
o k € AvailableCownlds(A, P, R), or
o there exists 5’ € dom(R) such that kK € R(8)}cowns
(5) If t € (rng(P) u rng(R)) and tlcowns = K and ¢ # j then k; # K;
(6) Uverng(a) visible(v, @) U U(_ e.o)emg(P)urng(r) Visible(e, ) € AllCownlds(A, R)

where all free variables are universally quantified.

Item 1 ensures that the pending and running behaviours have disjoint identifiers. Item 2 and
Item 3 ensure that a cown acquired by a running behaviour is neither acquired by another running
behaviour, nor is it available. Item 5 ensures pending behaviours only wait on cowns that exist.
Item 4 ensures that no behaviour uses the same cown via different variables; we make this restriction
to ensure cown contents are unambiguous when a behaviour end. Item 7 ensures that any cown
that is visible, through a cown’s contents or behaviour’s stack, also exists as a known cown in the
configuration.

B.2 Isolation Guarantees for Data-Race Freedom

Our semantics do not prevent any data-races. However, we can guarantee against data-races by
with a number of isolation requirements in the underlying language.
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We assume an underlying programming language as follows:

Definition B.6 (Underlying Language). A tuple ( FEzpr, Val, Addr, Context, Heap, Stack,
Permission, error, —, x, #, E _~ . £ O, |, visible ) is an underlying programming
language, if

1.

10.

11.

The identifiers e, €/, . . . range over elements of Ezpr, v,v’, ... for Val, E for Context, x, X', . ..
for Heap, o,0’, ... for Stack, =,n',... for Permission and k, ', ... for Tag.

Ezxpr and Context are inductively defined sets, and Val € Expr, and Tag € Val, and unit €
Val. We require the implicit application operator _ : Context x Expr — Expr where E[e]
represents the application _ E e.

Var — Val € Stack
An underlying configuration is UnderlyingConf = (Expr x Heap x Stack x Permission)

The function wvisible with the signature wvisible : UnderlyingConf — P(Tag) intuitively gen-
erates elements of Tag visible from an underlying program state.

(a) wisible(k, x, D, m) = {Kk}

(b) wvisible(unit, x, @, m) = @

(c) wisible(e, x, 0, ) = Uperng(o) visible(v, x, @, ) U visible(e, x, &, T)
(d) wvisible(E[e], x, 0, m) = wisible(E[unit], x, o, 7) U wvisible(e, x, o, )

The judgement x E 7 < is defined. Intuitively, this judges that an element of Permission is
well-formed w.r.t to a heap.

The judgement # c Permission x Permission and an associative and commutative function
* with signature * ¢ (Permission x Permission) — Permission are defined.

(a) m x o is defined iff 71 # 7o

(b) An element € € Permission such that for all m € Permission it holds that m*xe = 7
(¢) If (mq x o) x 73 is defined then 7y * 73 and 7o * 73 are defined.

(d) If = 71 * wo then wvisible(e, x, 0,m) U visible(e, x, o, m2) S visible(e, x, 0, T)

() fm=mxmgthen x E r O i x Emp O and x E m O

The function | ¢ (Heap x Val) — Permission is defined. This function generates a pro-
tected set, intuitively those that should be protected by a value/capability.

The judgement 7 E e, x, o < is defined
(a) Tt holds that x Jv E v, x, 2O
(b) If 1y = e, x,0 < and m = 7y % wo then wisible(e, x, o, m) = wvisible(e, x, 0, m1)

The judgement m = x1 ~ X2 is defined. Intuitively this judges that an element of Permission
considers two heaps to simulate one another.

(a) IfmE x1 ~ x2and m = my xmg then 1 E X1 ~ X2 and T3 & x1 ~ X2

(b) fm = x1 ~ x2and x1 = 7 < then x2 = 7

(¢c) fmEx1 ~x2and 7 = (x1{v) then 7 = (x2 | v).

(d) If # = x1 ~ xo then visible(e, x1,0, ) = visible(e, x2, 0, 7)

() fmEx1 ~x2and 7 E e, x1,0 <O then 7 E e, x2,0 O

The execution relation — has signature - ¢ UnderlyingConf — (UnderlyingConf v error)

(a) If ey ¢ Val and ey, x1,01,m < error then there exists es, X2, 02, ma such that
€1,X1,01,T1 = €2, X2,02, T2

(b) If e, x1,01, ™1 = €, X2, 02, T then wisible(ea, X2, 02, m2) € wisible(e1, X1, 01, T1)

(c) If e1, x1, 01, 1 = €2, X2, 02,2 and x1 E m < then x2 £ w3 O.
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(d) If €1,X1,01,T1 > €2, X2,02, T2 and T F €1,X1,01 <& then T2 E €2,X2,02 &

(e) If €1,X1,01,T1 > €2, X2,02, T2 and X E T & and T kT3 is defined and X1 F 73 o then
g * 73 is defined and w3 E x1 ~ X2

(f) Ife1, x1,01, T > €2, X2, 02, T2 and e3, X2, 03, T3 <> €4, X3, 04, T4 and x1 F m O and ;1 F
w3 & and 7y * w3 is defined then there exists x4 such that es, x1, 03, T3 = €4, X4, 04, T4
and e1, x4, 01, T1 = €2, X3, 02, T2

Definition B.7 (BoC extensions). We define the Behaviour-Oriented Concurrency (BoC) exten-
sion for a well-behaved language, (Ezpr,,, Val,, Context,,, Heap,,, Stack,, ||, =), as follows:

1.
2.

9.
10.

Val = Val,

r="e) |y=rel|{e}

Ezpr extends the inductive definition of Ezpr,,, so that Val ¢ Ezpr, and cown e and when (T =
are expressions.

Intuitively, e € Ezpr == ...asin Ezpr,... | coune | when (T = ¢) [y = ¢]| {e}

We require T = e, the sequence of required cowns in when (T = ¢) [y = €| {e} to be non-
empty.

Context extends the inductive definition of Context, so that:

E € Context == ...as in Context, ...
| cown e
| when (T =R,z = »,7 = ¢) [y = ¢] {e}

| when (T =7) [y =70,y = 7 =e¢]|{e}

The relation — with signature < ¢ (FEzpr x Heap, x Stack, x Permission,) — (Expr x
Heap,, x Stack, x Permission,) & error, is defined as in =,

The judgement 7 E e, x, 0 O is extended for Fzpr as follows:

mTEcowne x,00 < TWEeEX,0O

mE when (T =€) [T =¢e2]|{es},x, 00 <= Veeceegue.(nkEex,00)AeEes3Xx,TO

. wvisible is extended for Fzpr as follows:

. as in vistble
visible(e, x, 0, ) = { visible(e, x, o, ™) if e = cown ¢

Uerearugs (visible(e’, x, o, m)) U visible(es, x, D, €) if e = when (T = é7)

. Behaviourld is an enumerable set used for behaviour identifiers, ranged over by 8, 3/, ...

where

PendingBehaviour = (P(Var x Tag) x Ezpr x Stack)
RunningBehaviour = (P(Var x Tag) x Expr x Stack x Protected)

A € AvailableCowns = Tag - Val
P e PendingBehaviours = Behaviourld — PendingBehaviour

R € RunningBehaviours = Behaviourld — RunningBehaviour

ErrorConf represents a state where some static or dynamic error occurs.

The execution relation ~ ¢ Conf — (Conf w ErrorConf) is defined in Figure B.2.
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As have extended the definition of Expr, Context, £ , , <& and visible we also require that
underlying properties, that involve these components, still hold. = We need to show the properties
of the underlying still hold with the extended Expr and Context. This involves the wf conf, visible
and exec

Definition B.8 (Auxiliary Functions). We define the auxiliary functions
beowns + (PendingBehaviour U RunningBehaviour) — P(Tag) as follows:

((_aE)a > _)l'coums = E((_7E)7 _ _)Jrcowns =K

perms : Heap x (Val u PendingBehaviour U RunningBehaviour) — Permission as follows:

x v, ift =w
perms(X7t) = *verng(o)(XUU)a ift = (*’*’0—)
T, ift=(_, , ,m

vis : Heap x (Val u PendingBehaviour U RunningBehaviour) — P(Tag) as follows:

visible(v, x, @, perms(x,v)), ift =wv
vis(x,t) = { wvisible(e, x, o, perms(x,t)), ift = (_,e 0)
visible(e, x, o, ), ift =(_,e o)

AllCownlds : AvailableCowns x RunningBehaviours — P(Tag) as follows:

AllCownIds(A,R) = | (R(B)lcowns) U dom(A)
Bedom(R)

behavs : PendingBehaviours x RunningBehaviours — P(Behaviourld) as follows:
behavs(P, R) = dom(P) u dom(R)

Definition B.9 (Well-Formed Configuration). We define the well-formed judgement WF ¢ (Heap x
AwvailableCowns x PendingBehaviours x RunningBehaviours), where free variables are implicitly
universally quantified, as WF (A, P, R) iff:

1. dom(P) n dom(R) = @
2. If By # B2 and {f1, B2} € dom(R) then R(51)lcowns N R(B2)cowns =
3. If 8 € dom(R) then R(8)!cowns N dom(A) = @
4. If 8 € dom(P) and P(B)lcowns = K and ¢ # j then r; # K;
5. If 8 € dom(P) and P(5)!couns = K then for all k € &:
e r € dom(A), or
e there exists 8’ € dom(R) such that k € R(8')!cowns
6. X F *Fic(rng(A)urg(P)urng(R)) Perms(x; t) &
7. Ute(rng(A)ume(P)ume(R)) Vis(x,t) & AllCownlds(A, R)
8. If B € dom(R) u dom(P) and:
e R(B) =(_,e,o,m) or
o P(3) = (_,e.0) and 7 = perms(x, P(5))
thenm E e, x, 0O

B.3 Concurrency Semantics with Isolation Guarantees
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[OS-CREATE]

(0S-5TEP] - R(B) = ({7, ), Elcowm o], 7, (x U v) )
R(B) = ((z,kK),e,0,m) k ¢ cowns(A, R)
€, X, O—vﬂ-;)e,vxlao-lu 71—, T E E[h].X O'<>

X7 A7 P7RMX,7 A’ P’ R[/B g ((I7 H)76,7 O-,’Tr,)] X’ A7 P7RMX7 A[H = /U]’P7 R[ﬂ = ((x’ K)’E[H:LO,? Tr)]

[OS-SPAWN]
R(B) = ((#,k),E[when (2" = ') [ = 0] {e}], 0, *vem(x Y v) x7)
Vi,jel...n(i#j = kK # K})
B’ ¢ behavs(P, R)

*UEF(X U 'U) E e X (U g /U) <&
7w E Elunit], x,0 ¢

X 4, PR~ x, A, PIB" = ((2', 1), €, (y = v))], R[S = ((#, %), E[unit], o, m)]

[OS-DISPATCH]

P(B) = ((z,r),e,0)
% ¢ dom(A)
o' = o[z » A(k1),...,zp = A(ky
RN R e
Fex.o' o R(B) = ((z, 1), v, 0, *¥sez(x | 0(2)) ¥ )

X,A,P,RNY)QA NE, PN ﬁvR[ﬂ e ((LE,KZ),@,JI,’/T)] XvAv-P»R""XvA[K/l = U(xl)a”-a"fn ng U(xn)]’PvR N 5

303

Figure B.2: BoC Semantics
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